Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312590420> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4312590420 abstract "The focus of this project is to accelerate and transform the workflow of multiscale materials modeling by developing an integrated toolchain seamlessly combining DFT, SNAP, LAMMPS, (shown in Figure 1-1) and a machine-learning (ML) model that will more efficiently extract information from a smaller set of first-principles calculations. Our ML model enables us to accelerate first-principles data generation by interpolating existing high fidelity data, and extend the simulation scale by extrapolating high fidelity data ( 10 2 atoms) to the mesoscale ( 10 4 atoms). It encodes the underlying physics of atomic interactions on the microscopic scale by adapting a variety of ML techniques such as deep neural networks (DNNs), and graph neural networks (GNNs). We developed a new surrogate model for density functional theory using deep neural networks. The developed ML surrogate is demonstrated in a workflow to generate accurate band energies, total energies, and density of the 298K and 933K Aluminum systems. Furthermore, the models can be used to predict the quantities of interest for systems with more number of atoms than the training data set. We have demonstrated that the ML model can be used to compute the quantities of interest for systems with 100,000 Al atoms. When compared with 2000 Al system the new surrogate model is as accurate as DFT, but three orders of magnitude faster. We also explored optimal experimental design techniques to choose the training data and novel Graph Neural Networks to train on smaller data sets. These are promising methods that need to be explored in the future." @default.
- W4312590420 created "2023-01-05" @default.
- W4312590420 creator A5023482297 @default.
- W4312590420 creator A5031951344 @default.
- W4312590420 creator A5034807923 @default.
- W4312590420 creator A5043256783 @default.
- W4312590420 creator A5048591340 @default.
- W4312590420 creator A5058200721 @default.
- W4312590420 creator A5071658551 @default.
- W4312590420 creator A5081143895 @default.
- W4312590420 date "2022-09-01" @default.
- W4312590420 modified "2023-10-18" @default.
- W4312590420 title "Accelerating Multiscale Materials Modeling with Machine Learning" @default.
- W4312590420 doi "https://doi.org/10.2172/1889336" @default.
- W4312590420 hasPublicationYear "2022" @default.
- W4312590420 type Work @default.
- W4312590420 citedByCount "0" @default.
- W4312590420 crossrefType "report" @default.
- W4312590420 hasAuthorship W4312590420A5023482297 @default.
- W4312590420 hasAuthorship W4312590420A5031951344 @default.
- W4312590420 hasAuthorship W4312590420A5034807923 @default.
- W4312590420 hasAuthorship W4312590420A5043256783 @default.
- W4312590420 hasAuthorship W4312590420A5048591340 @default.
- W4312590420 hasAuthorship W4312590420A5058200721 @default.
- W4312590420 hasAuthorship W4312590420A5071658551 @default.
- W4312590420 hasAuthorship W4312590420A5081143895 @default.
- W4312590420 hasBestOaLocation W43125904202 @default.
- W4312590420 hasConcept C108583219 @default.
- W4312590420 hasConcept C11413529 @default.
- W4312590420 hasConcept C119857082 @default.
- W4312590420 hasConcept C131675550 @default.
- W4312590420 hasConcept C154945302 @default.
- W4312590420 hasConcept C177212765 @default.
- W4312590420 hasConcept C199360897 @default.
- W4312590420 hasConcept C2776459999 @default.
- W4312590420 hasConcept C2777062904 @default.
- W4312590420 hasConcept C2777904410 @default.
- W4312590420 hasConcept C41008148 @default.
- W4312590420 hasConcept C459310 @default.
- W4312590420 hasConcept C50644808 @default.
- W4312590420 hasConcept C76155785 @default.
- W4312590420 hasConcept C77088390 @default.
- W4312590420 hasConcept C80444323 @default.
- W4312590420 hasConceptScore W4312590420C108583219 @default.
- W4312590420 hasConceptScore W4312590420C11413529 @default.
- W4312590420 hasConceptScore W4312590420C119857082 @default.
- W4312590420 hasConceptScore W4312590420C131675550 @default.
- W4312590420 hasConceptScore W4312590420C154945302 @default.
- W4312590420 hasConceptScore W4312590420C177212765 @default.
- W4312590420 hasConceptScore W4312590420C199360897 @default.
- W4312590420 hasConceptScore W4312590420C2776459999 @default.
- W4312590420 hasConceptScore W4312590420C2777062904 @default.
- W4312590420 hasConceptScore W4312590420C2777904410 @default.
- W4312590420 hasConceptScore W4312590420C41008148 @default.
- W4312590420 hasConceptScore W4312590420C459310 @default.
- W4312590420 hasConceptScore W4312590420C50644808 @default.
- W4312590420 hasConceptScore W4312590420C76155785 @default.
- W4312590420 hasConceptScore W4312590420C77088390 @default.
- W4312590420 hasConceptScore W4312590420C80444323 @default.
- W4312590420 hasLocation W43125904201 @default.
- W4312590420 hasLocation W43125904202 @default.
- W4312590420 hasLocation W43125904203 @default.
- W4312590420 hasLocation W43125904204 @default.
- W4312590420 hasOpenAccess W4312590420 @default.
- W4312590420 hasPrimaryLocation W43125904201 @default.
- W4312590420 hasRelatedWork W2922457425 @default.
- W4312590420 hasRelatedWork W3014300295 @default.
- W4312590420 hasRelatedWork W3164822677 @default.
- W4312590420 hasRelatedWork W4223943233 @default.
- W4312590420 hasRelatedWork W4225161397 @default.
- W4312590420 hasRelatedWork W4250304930 @default.
- W4312590420 hasRelatedWork W4309045103 @default.
- W4312590420 hasRelatedWork W4312200629 @default.
- W4312590420 hasRelatedWork W4360585206 @default.
- W4312590420 hasRelatedWork W4364306694 @default.
- W4312590420 isParatext "false" @default.
- W4312590420 isRetracted "false" @default.
- W4312590420 workType "report" @default.