Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312597943> ?p ?o ?g. }
- W4312597943 endingPage "8599" @default.
- W4312597943 startingPage "8586" @default.
- W4312597943 abstract "Airplane detection in synthetic aperture radar (SAR) images has drawn much attention owing to the success of deep learning methods. However, the development of fine-grained airplane detection in SAR images is still in a dilemma due to the small inter-class variance and the large intra-class variance in complex scenes with strong interference from the background. In addition, the class imbalance problem in multi-class fine-grained airplane recognition also significantly limits the direct application of general deep-learning-based airplane detectors. This paper proposes two effective methods to tackle the above two problems, respectively. First, we propose a sparse attention-guided fine-grained pyramid (SA-FP) module to simultaneously sample discriminative local features scattered in multi-scale layers and adaptively aggregate them with fine-grained attention to better classify subordinate-level airplanes with multiple scales. Second, a simple class-balanced copy-paste data augmentation (CC-DA) strategy, which randomly copies an airplane of one category and pastes it onto an image according to the class-wise probability, is proposed for class balance. Finally, extensive experiments on one public dataset and three representative deep-learning-based detection benchmarks are conducted to show the effectiveness and generalization of the two proposed methods. The combination of these two methods based on the Cascade R-CNN benchmark also won fifth place in fine-grained airplane detection in SAR images in the 2021 Gaofen challenge." @default.
- W4312597943 created "2023-01-05" @default.
- W4312597943 creator A5001685540 @default.
- W4312597943 creator A5012217615 @default.
- W4312597943 creator A5028261340 @default.
- W4312597943 creator A5058559893 @default.
- W4312597943 creator A5071278383 @default.
- W4312597943 creator A5089966269 @default.
- W4312597943 date "2022-01-01" @default.
- W4312597943 modified "2023-09-27" @default.
- W4312597943 title "Detecting Fine-Grained Airplanes in SAR Images With Sparse Attention-Guided Pyramid and Class-Balanced Data Augmentation" @default.
- W4312597943 cites W1973066300 @default.
- W4312597943 cites W2048153049 @default.
- W4312597943 cites W2104657103 @default.
- W4312597943 cites W2112739286 @default.
- W4312597943 cites W2117539524 @default.
- W4312597943 cites W2152433379 @default.
- W4312597943 cites W2194775991 @default.
- W4312597943 cites W2202499615 @default.
- W4312597943 cites W2291529341 @default.
- W4312597943 cites W2548711151 @default.
- W4312597943 cites W2554320282 @default.
- W4312597943 cites W2565639579 @default.
- W4312597943 cites W2601564443 @default.
- W4312597943 cites W2752782242 @default.
- W4312597943 cites W2807931652 @default.
- W4312597943 cites W2810181536 @default.
- W4312597943 cites W2898947732 @default.
- W4312597943 cites W2901756989 @default.
- W4312597943 cites W2948672349 @default.
- W4312597943 cites W2962721361 @default.
- W4312597943 cites W2962878352 @default.
- W4312597943 cites W2963066927 @default.
- W4312597943 cites W2963150697 @default.
- W4312597943 cites W2963271314 @default.
- W4312597943 cites W2963351448 @default.
- W4312597943 cites W2963857746 @default.
- W4312597943 cites W2964241181 @default.
- W4312597943 cites W2965318645 @default.
- W4312597943 cites W2982103617 @default.
- W4312597943 cites W2982220924 @default.
- W4312597943 cites W2982620340 @default.
- W4312597943 cites W2982770724 @default.
- W4312597943 cites W2986357608 @default.
- W4312597943 cites W3012991496 @default.
- W4312597943 cites W3032837604 @default.
- W4312597943 cites W3034307881 @default.
- W4312597943 cites W3041525128 @default.
- W4312597943 cites W3093220398 @default.
- W4312597943 cites W3101684954 @default.
- W4312597943 cites W3108105109 @default.
- W4312597943 cites W3126558081 @default.
- W4312597943 cites W3127743092 @default.
- W4312597943 cites W3171660447 @default.
- W4312597943 cites W3176659256 @default.
- W4312597943 cites W3182635745 @default.
- W4312597943 cites W3184840388 @default.
- W4312597943 cites W3198862447 @default.
- W4312597943 cites W3203170887 @default.
- W4312597943 cites W3203687922 @default.
- W4312597943 cites W3208364069 @default.
- W4312597943 cites W4206237889 @default.
- W4312597943 cites W56385144 @default.
- W4312597943 cites W639708223 @default.
- W4312597943 doi "https://doi.org/10.1109/jstars.2022.3208928" @default.
- W4312597943 hasPublicationYear "2022" @default.
- W4312597943 type Work @default.
- W4312597943 citedByCount "1" @default.
- W4312597943 countsByYear W43125979432023 @default.
- W4312597943 crossrefType "journal-article" @default.
- W4312597943 hasAuthorship W4312597943A5001685540 @default.
- W4312597943 hasAuthorship W4312597943A5012217615 @default.
- W4312597943 hasAuthorship W4312597943A5028261340 @default.
- W4312597943 hasAuthorship W4312597943A5058559893 @default.
- W4312597943 hasAuthorship W4312597943A5071278383 @default.
- W4312597943 hasAuthorship W4312597943A5089966269 @default.
- W4312597943 hasBestOaLocation W43125979431 @default.
- W4312597943 hasConcept C108583219 @default.
- W4312597943 hasConcept C119857082 @default.
- W4312597943 hasConcept C13280743 @default.
- W4312597943 hasConcept C134306372 @default.
- W4312597943 hasConcept C142575187 @default.
- W4312597943 hasConcept C153180895 @default.
- W4312597943 hasConcept C154945302 @default.
- W4312597943 hasConcept C159985019 @default.
- W4312597943 hasConcept C177148314 @default.
- W4312597943 hasConcept C185798385 @default.
- W4312597943 hasConcept C192562407 @default.
- W4312597943 hasConcept C205649164 @default.
- W4312597943 hasConcept C2524010 @default.
- W4312597943 hasConcept C2776151529 @default.
- W4312597943 hasConcept C2777212361 @default.
- W4312597943 hasConcept C2781407631 @default.
- W4312597943 hasConcept C31972630 @default.
- W4312597943 hasConcept C33923547 @default.
- W4312597943 hasConcept C41008148 @default.
- W4312597943 hasConcept C87360688 @default.
- W4312597943 hasConcept C97931131 @default.