Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312598239> ?p ?o ?g. }
- W4312598239 endingPage "500" @default.
- W4312598239 startingPage "489" @default.
- W4312598239 abstract "LiDAR localization is of great importance to autonomous vehicles and robotics. Absolute pose regression, directly estimating the mapping from a scene to a 6-DoF pose, has achieved impressive results in learning-based localization. Different from traditional map-based methods, it does not need a pre-built 3D map during inference. However, current regression networks typically suffer from scene ambiguities, especially in challenging traffic environments, leading to large wrong predictions (e.g., outliers) and limited applications. To address this problem, a novel LiDAR localization framework with spatio-temporal constraints is proposed, termed STCLoc, to reduce scene ambiguities and achieve more accurate localization. First, we propose to regularize regression in the spatial dimension with a novel classification task to reduce outliers. Specifically, the classification task categorizes the point cloud in terms of position and orientation and then couples it with the regression task to conduct multi-task learning. Second, to learn discriminative features to reduce scene ambiguities, we propose using attention-based feature aggregation to capture the correlation in LiDAR sequences. We conduct extensive experiments on two benchmark datasets, where the localization takes 97ms on each dataset. Results show that our model outperforms state-of-the-art methods by 43.33%/36.76% (position/orientation) on the Oxford Radar RobotCar dataset, verifying the effectiveness of our method. The source code is available on the project website at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/PSYZ1234/STCLoc</uri> ." @default.
- W4312598239 created "2023-01-05" @default.
- W4312598239 creator A5047386824 @default.
- W4312598239 creator A5047852968 @default.
- W4312598239 creator A5061899878 @default.
- W4312598239 creator A5075333422 @default.
- W4312598239 creator A5082725692 @default.
- W4312598239 creator A5083422622 @default.
- W4312598239 date "2023-01-01" @default.
- W4312598239 modified "2023-10-17" @default.
- W4312598239 title "STCLoc: Deep LiDAR Localization With Spatio-Temporal Constraints" @default.
- W4312598239 cites W2097117768 @default.
- W4312598239 cites W2100237490 @default.
- W4312598239 cites W2200124539 @default.
- W4312598239 cites W2560609797 @default.
- W4312598239 cites W2584731199 @default.
- W4312598239 cites W2605111497 @default.
- W4312598239 cites W2749379418 @default.
- W4312598239 cites W2795645133 @default.
- W4312598239 cites W2953205834 @default.
- W4312598239 cites W2955544543 @default.
- W4312598239 cites W2963109694 @default.
- W4312598239 cites W2963493651 @default.
- W4312598239 cites W2963708168 @default.
- W4312598239 cites W2966072084 @default.
- W4312598239 cites W2981556384 @default.
- W4312598239 cites W2983104849 @default.
- W4312598239 cites W2985516791 @default.
- W4312598239 cites W2986519585 @default.
- W4312598239 cites W2987570663 @default.
- W4312598239 cites W2995503268 @default.
- W4312598239 cites W2997032998 @default.
- W4312598239 cites W2997848713 @default.
- W4312598239 cites W2998513956 @default.
- W4312598239 cites W3001437801 @default.
- W4312598239 cites W3035182575 @default.
- W4312598239 cites W3035397262 @default.
- W4312598239 cites W3090139470 @default.
- W4312598239 cites W3099342433 @default.
- W4312598239 cites W3103720336 @default.
- W4312598239 cites W3118509995 @default.
- W4312598239 cites W3129188981 @default.
- W4312598239 cites W3133648073 @default.
- W4312598239 cites W3136926086 @default.
- W4312598239 cites W3138197200 @default.
- W4312598239 cites W3160028740 @default.
- W4312598239 cites W3167610791 @default.
- W4312598239 cites W3168256178 @default.
- W4312598239 cites W3177280664 @default.
- W4312598239 cites W3185561982 @default.
- W4312598239 cites W3185902918 @default.
- W4312598239 cites W3206761887 @default.
- W4312598239 cites W3210352327 @default.
- W4312598239 cites W3212680124 @default.
- W4312598239 cites W3216723752 @default.
- W4312598239 cites W4223654325 @default.
- W4312598239 cites W4285114669 @default.
- W4312598239 doi "https://doi.org/10.1109/tits.2022.3213311" @default.
- W4312598239 hasPublicationYear "2023" @default.
- W4312598239 type Work @default.
- W4312598239 citedByCount "1" @default.
- W4312598239 crossrefType "journal-article" @default.
- W4312598239 hasAuthorship W4312598239A5047386824 @default.
- W4312598239 hasAuthorship W4312598239A5047852968 @default.
- W4312598239 hasAuthorship W4312598239A5061899878 @default.
- W4312598239 hasAuthorship W4312598239A5075333422 @default.
- W4312598239 hasAuthorship W4312598239A5082725692 @default.
- W4312598239 hasAuthorship W4312598239A5083422622 @default.
- W4312598239 hasConcept C108583219 @default.
- W4312598239 hasConcept C119857082 @default.
- W4312598239 hasConcept C131979681 @default.
- W4312598239 hasConcept C138885662 @default.
- W4312598239 hasConcept C153180895 @default.
- W4312598239 hasConcept C154945302 @default.
- W4312598239 hasConcept C162324750 @default.
- W4312598239 hasConcept C16345878 @default.
- W4312598239 hasConcept C185798385 @default.
- W4312598239 hasConcept C187736073 @default.
- W4312598239 hasConcept C19966478 @default.
- W4312598239 hasConcept C205649164 @default.
- W4312598239 hasConcept C2524010 @default.
- W4312598239 hasConcept C2776214188 @default.
- W4312598239 hasConcept C2776401178 @default.
- W4312598239 hasConcept C2780451532 @default.
- W4312598239 hasConcept C31972630 @default.
- W4312598239 hasConcept C33923547 @default.
- W4312598239 hasConcept C41008148 @default.
- W4312598239 hasConcept C41895202 @default.
- W4312598239 hasConcept C51399673 @default.
- W4312598239 hasConcept C58640448 @default.
- W4312598239 hasConcept C62649853 @default.
- W4312598239 hasConcept C79337645 @default.
- W4312598239 hasConcept C86369673 @default.
- W4312598239 hasConcept C90509273 @default.
- W4312598239 hasConcept C97931131 @default.
- W4312598239 hasConceptScore W4312598239C108583219 @default.
- W4312598239 hasConceptScore W4312598239C119857082 @default.
- W4312598239 hasConceptScore W4312598239C131979681 @default.