Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312669283> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4312669283 endingPage "497" @default.
- W4312669283 startingPage "484" @default.
- W4312669283 abstract "Molecular docking (MD) is one of the core steps in the expensive and time-consuming process of drug design, which is basically an optimization problem based on scoring functions. AutoDock series MD software is widely accepted by academia and industry, among which AutoDock Vina (Vina) is the latest and most popular version due to its accuracy and relatively high speed. However, contrast to its prior version, i.e., AutoDock4, hardware acceleration approaches of Vina are rarely reported. In this article, we propose Vina-field-programmable gate array (FPGA), a hardware-accelerated Vina implementation with FPGA that exploits the low-level parallelism. First, the fixed-point quantization is analyzed and realized to accelerate the MD algorithm with a better energy efficiency in hardware. To boost the performance of the module-level computation, multiple in- module hardware pipelines have been designed and implemented. Besides, a strategy for fast accessing to block RAM (BRAM) is implemented by utilizing the layout of data, which brings four times memory access speed to the intermolecular and intramolecular energy computing modules. Under the same 140 ligand–receptor benchmarks, Vina-FPGA performs up to <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$6.9times $ </tex-math></inline-formula> (average <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$3.7times$ </tex-math></inline-formula> ) faster than a state-of-the-art CPU does while consuming only 2.5% energy with similar docking accuracies. Compared to the GPU-accelerated implementation or Vina-GPU, the average energy consumption of Vina-FPGA is merely 45%." @default.
- W4312669283 created "2023-01-05" @default.
- W4312669283 creator A5008586147 @default.
- W4312669283 creator A5022652033 @default.
- W4312669283 creator A5038407305 @default.
- W4312669283 creator A5055272142 @default.
- W4312669283 creator A5071939085 @default.
- W4312669283 creator A5078395317 @default.
- W4312669283 creator A5079552709 @default.
- W4312669283 date "2023-04-01" @default.
- W4312669283 modified "2023-10-15" @default.
- W4312669283 title "Vina-FPGA: A Hardware-Accelerated Molecular Docking Tool With Fixed-Point Quantization and Low-Level Parallelism" @default.
- W4312669283 cites W1964958542 @default.
- W4312669283 cites W2055835086 @default.
- W4312669283 cites W2105668062 @default.
- W4312669283 cites W2108389384 @default.
- W4312669283 cites W2129556489 @default.
- W4312669283 cites W2132617221 @default.
- W4312669283 cites W2149448901 @default.
- W4312669283 cites W2162969801 @default.
- W4312669283 cites W2195839185 @default.
- W4312669283 cites W2285239529 @default.
- W4312669283 cites W2336040088 @default.
- W4312669283 cites W2388080941 @default.
- W4312669283 cites W2540567592 @default.
- W4312669283 cites W2613685575 @default.
- W4312669283 cites W2615797035 @default.
- W4312669283 cites W2768092025 @default.
- W4312669283 cites W2844503360 @default.
- W4312669283 cites W2888400067 @default.
- W4312669283 cites W3010016408 @default.
- W4312669283 cites W3010066494 @default.
- W4312669283 cites W3120361527 @default.
- W4312669283 cites W3159160110 @default.
- W4312669283 cites W3215053647 @default.
- W4312669283 cites W4280550952 @default.
- W4312669283 doi "https://doi.org/10.1109/tvlsi.2022.3217275" @default.
- W4312669283 hasPublicationYear "2023" @default.
- W4312669283 type Work @default.
- W4312669283 citedByCount "2" @default.
- W4312669283 countsByYear W43126692832023 @default.
- W4312669283 crossrefType "journal-article" @default.
- W4312669283 hasAuthorship W4312669283A5008586147 @default.
- W4312669283 hasAuthorship W4312669283A5022652033 @default.
- W4312669283 hasAuthorship W4312669283A5038407305 @default.
- W4312669283 hasAuthorship W4312669283A5055272142 @default.
- W4312669283 hasAuthorship W4312669283A5071939085 @default.
- W4312669283 hasAuthorship W4312669283A5078395317 @default.
- W4312669283 hasAuthorship W4312669283A5079552709 @default.
- W4312669283 hasConcept C11413529 @default.
- W4312669283 hasConcept C13164978 @default.
- W4312669283 hasConcept C173608175 @default.
- W4312669283 hasConcept C41008148 @default.
- W4312669283 hasConcept C42935608 @default.
- W4312669283 hasConcept C459310 @default.
- W4312669283 hasConcept C9390403 @default.
- W4312669283 hasConceptScore W4312669283C11413529 @default.
- W4312669283 hasConceptScore W4312669283C13164978 @default.
- W4312669283 hasConceptScore W4312669283C173608175 @default.
- W4312669283 hasConceptScore W4312669283C41008148 @default.
- W4312669283 hasConceptScore W4312669283C42935608 @default.
- W4312669283 hasConceptScore W4312669283C459310 @default.
- W4312669283 hasConceptScore W4312669283C9390403 @default.
- W4312669283 hasFunder F4320321001 @default.
- W4312669283 hasIssue "4" @default.
- W4312669283 hasLocation W43126692831 @default.
- W4312669283 hasOpenAccess W4312669283 @default.
- W4312669283 hasPrimaryLocation W43126692831 @default.
- W4312669283 hasRelatedWork W2074043759 @default.
- W4312669283 hasRelatedWork W2082487009 @default.
- W4312669283 hasRelatedWork W2111241003 @default.
- W4312669283 hasRelatedWork W2210979487 @default.
- W4312669283 hasRelatedWork W2518118925 @default.
- W4312669283 hasRelatedWork W3035662153 @default.
- W4312669283 hasRelatedWork W3042736233 @default.
- W4312669283 hasRelatedWork W3159273459 @default.
- W4312669283 hasRelatedWork W3201362027 @default.
- W4312669283 hasRelatedWork W4200391368 @default.
- W4312669283 hasVolume "31" @default.
- W4312669283 isParatext "false" @default.
- W4312669283 isRetracted "false" @default.
- W4312669283 workType "article" @default.