Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312671105> ?p ?o ?g. }
- W4312671105 endingPage "12" @default.
- W4312671105 startingPage "1" @default.
- W4312671105 abstract "Surface electromyography (EMG) is one of the promising signals for the recognition of the intended hand movement of an amputee. Nevertheless, there are several barriers to its successful implementation in the advanced prosthetic hand. Subject-dependent EMG pattern recognition is one of them, which limits the use of a training model for a specific subject to others. So, this study aims to explore a subject invariant EMG pattern recognition method that is performed by extracting subject invariant features. To extract subject invariant features, we have created a feature space using a feature extraction method, and the dimensionality of the feature space is reduced by employing spectral regression discriminant analysis (SRDA). Finally, each SRDA feature is normalized using min-max normalization, which confines the scale of each SRDA feature from 0 to 1. The proposed subject invariant EMG pattern recognition method achieves the F1 score of 97.26%, 96.47%, 95.42%, and 93.71% with a linear discriminant analysis classifier (LDA) for an electrode array of 8×16, 8×8, 8×4, and 8×2, respectively. The achieved performances are almost equal to or sometimes better than those achieved in subject independent and subject-dependent EMG pattern recognition. Also, the proposed method is simple, classifier independent, time complexity free, and does not require any customization or fine-tuning of classifiers. So, the proposed subject invariant EMG pattern recognition method would be an option to overcome the training barrier for each subject without compromising the EMG pattern recognition performance." @default.
- W4312671105 created "2023-01-05" @default.
- W4312671105 creator A5019536560 @default.
- W4312671105 creator A5044019751 @default.
- W4312671105 creator A5065587111 @default.
- W4312671105 creator A5074798146 @default.
- W4312671105 creator A5077128043 @default.
- W4312671105 creator A5083923109 @default.
- W4312671105 date "2022-01-01" @default.
- W4312671105 modified "2023-10-14" @default.
- W4312671105 title "Application of Min-Max Normalization on Subject-Invariant EMG Pattern Recognition" @default.
- W4312671105 cites W1524809867 @default.
- W4312671105 cites W1630124393 @default.
- W4312671105 cites W1985493107 @default.
- W4312671105 cites W2006749861 @default.
- W4312671105 cites W2046698687 @default.
- W4312671105 cites W2047501720 @default.
- W4312671105 cites W2052543545 @default.
- W4312671105 cites W2106253207 @default.
- W4312671105 cites W2106526692 @default.
- W4312671105 cites W2110119146 @default.
- W4312671105 cites W2115881480 @default.
- W4312671105 cites W2155692114 @default.
- W4312671105 cites W2158728671 @default.
- W4312671105 cites W2170151952 @default.
- W4312671105 cites W2171188488 @default.
- W4312671105 cites W2243789297 @default.
- W4312671105 cites W2509771830 @default.
- W4312671105 cites W2555541061 @default.
- W4312671105 cites W2559856295 @default.
- W4312671105 cites W2586482082 @default.
- W4312671105 cites W2593884970 @default.
- W4312671105 cites W2596884687 @default.
- W4312671105 cites W2600327335 @default.
- W4312671105 cites W2605417236 @default.
- W4312671105 cites W2949044188 @default.
- W4312671105 cites W2972073716 @default.
- W4312671105 cites W2981877040 @default.
- W4312671105 cites W2992838687 @default.
- W4312671105 cites W2995927431 @default.
- W4312671105 cites W2997304337 @default.
- W4312671105 cites W3025057411 @default.
- W4312671105 cites W3083930755 @default.
- W4312671105 cites W3087084178 @default.
- W4312671105 cites W3111294493 @default.
- W4312671105 cites W3111692847 @default.
- W4312671105 cites W3132427127 @default.
- W4312671105 cites W3158186241 @default.
- W4312671105 cites W3163954599 @default.
- W4312671105 cites W3165882235 @default.
- W4312671105 cites W3169917840 @default.
- W4312671105 cites W3173789025 @default.
- W4312671105 cites W4206217267 @default.
- W4312671105 cites W4206784770 @default.
- W4312671105 cites W4225912333 @default.
- W4312671105 cites W4226466209 @default.
- W4312671105 doi "https://doi.org/10.1109/tim.2022.3220286" @default.
- W4312671105 hasPublicationYear "2022" @default.
- W4312671105 type Work @default.
- W4312671105 citedByCount "6" @default.
- W4312671105 countsByYear W43126711052023 @default.
- W4312671105 crossrefType "journal-article" @default.
- W4312671105 hasAuthorship W4312671105A5019536560 @default.
- W4312671105 hasAuthorship W4312671105A5044019751 @default.
- W4312671105 hasAuthorship W4312671105A5065587111 @default.
- W4312671105 hasAuthorship W4312671105A5074798146 @default.
- W4312671105 hasAuthorship W4312671105A5077128043 @default.
- W4312671105 hasAuthorship W4312671105A5083923109 @default.
- W4312671105 hasConcept C111030470 @default.
- W4312671105 hasConcept C118552586 @default.
- W4312671105 hasConcept C136886441 @default.
- W4312671105 hasConcept C144024400 @default.
- W4312671105 hasConcept C153180895 @default.
- W4312671105 hasConcept C154945302 @default.
- W4312671105 hasConcept C15744967 @default.
- W4312671105 hasConcept C190470478 @default.
- W4312671105 hasConcept C19165224 @default.
- W4312671105 hasConcept C2777515770 @default.
- W4312671105 hasConcept C28490314 @default.
- W4312671105 hasConcept C33923547 @default.
- W4312671105 hasConcept C37914503 @default.
- W4312671105 hasConcept C41008148 @default.
- W4312671105 hasConcept C52622490 @default.
- W4312671105 hasConcept C69738355 @default.
- W4312671105 hasConcept C83665646 @default.
- W4312671105 hasConcept C95623464 @default.
- W4312671105 hasConcept C97931131 @default.
- W4312671105 hasConceptScore W4312671105C111030470 @default.
- W4312671105 hasConceptScore W4312671105C118552586 @default.
- W4312671105 hasConceptScore W4312671105C136886441 @default.
- W4312671105 hasConceptScore W4312671105C144024400 @default.
- W4312671105 hasConceptScore W4312671105C153180895 @default.
- W4312671105 hasConceptScore W4312671105C154945302 @default.
- W4312671105 hasConceptScore W4312671105C15744967 @default.
- W4312671105 hasConceptScore W4312671105C190470478 @default.
- W4312671105 hasConceptScore W4312671105C19165224 @default.
- W4312671105 hasConceptScore W4312671105C2777515770 @default.
- W4312671105 hasConceptScore W4312671105C28490314 @default.