Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312672145> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4312672145 endingPage "A106" @default.
- W4312672145 startingPage "A106" @default.
- W4312672145 abstract "Recently, there have been incredible strides in applying machine and deep learning methods to predict the presence of disease states in humans from recordings of voice. Pattern analyses of dolphin whistles have historically depended on human operators visually and audibly differentiating between sound types. The training and implementation of machine and deep learning strategies for audio analyses reduce human bias and may improve feature detection. Our team at the Navy Marine Mammal Program in San Diego, CA has developed a substantial vocal catalog of whistle recordings for a group of focal dolphins. Additionally, an extensive health history database for each animal is maintained as part of a preventive medicine program. Together, these result in a unique, labeled dataset comprised of tens of thousands of whistles (input) emitted during differing health states (output) that have been leveraged for training machine and deep learning models to classify health status from whistles. We present preliminary results that suggest that health information may be encoded across dolphin whistle characteristics, similar to changes in the human voice. Further, we describe the applied goals for testing and implementing these innovative tools for early predicting changes in dolphin health status from non-invasive recordings." @default.
- W4312672145 created "2023-01-05" @default.
- W4312672145 creator A5000010043 @default.
- W4312672145 creator A5055678815 @default.
- W4312672145 creator A5076015279 @default.
- W4312672145 creator A5088742438 @default.
- W4312672145 date "2022-10-01" @default.
- W4312672145 modified "2023-09-30" @default.
- W4312672145 title "Machine learning models can predict bottlenose dolphin health status from whistle recordings" @default.
- W4312672145 doi "https://doi.org/10.1121/10.0015698" @default.
- W4312672145 hasPublicationYear "2022" @default.
- W4312672145 type Work @default.
- W4312672145 citedByCount "1" @default.
- W4312672145 countsByYear W43126721452023 @default.
- W4312672145 crossrefType "journal-article" @default.
- W4312672145 hasAuthorship W4312672145A5000010043 @default.
- W4312672145 hasAuthorship W4312672145A5055678815 @default.
- W4312672145 hasAuthorship W4312672145A5076015279 @default.
- W4312672145 hasAuthorship W4312672145A5088742438 @default.
- W4312672145 hasConcept C108583219 @default.
- W4312672145 hasConcept C119857082 @default.
- W4312672145 hasConcept C138885662 @default.
- W4312672145 hasConcept C154945302 @default.
- W4312672145 hasConcept C15744967 @default.
- W4312672145 hasConcept C2776401178 @default.
- W4312672145 hasConcept C2776575663 @default.
- W4312672145 hasConcept C2776840061 @default.
- W4312672145 hasConcept C2987857752 @default.
- W4312672145 hasConcept C34951282 @default.
- W4312672145 hasConcept C41008148 @default.
- W4312672145 hasConcept C41895202 @default.
- W4312672145 hasConcept C46312422 @default.
- W4312672145 hasConcept C505870484 @default.
- W4312672145 hasConcept C71924100 @default.
- W4312672145 hasConcept C76155785 @default.
- W4312672145 hasConcept C86803240 @default.
- W4312672145 hasConcept C99454951 @default.
- W4312672145 hasConceptScore W4312672145C108583219 @default.
- W4312672145 hasConceptScore W4312672145C119857082 @default.
- W4312672145 hasConceptScore W4312672145C138885662 @default.
- W4312672145 hasConceptScore W4312672145C154945302 @default.
- W4312672145 hasConceptScore W4312672145C15744967 @default.
- W4312672145 hasConceptScore W4312672145C2776401178 @default.
- W4312672145 hasConceptScore W4312672145C2776575663 @default.
- W4312672145 hasConceptScore W4312672145C2776840061 @default.
- W4312672145 hasConceptScore W4312672145C2987857752 @default.
- W4312672145 hasConceptScore W4312672145C34951282 @default.
- W4312672145 hasConceptScore W4312672145C41008148 @default.
- W4312672145 hasConceptScore W4312672145C41895202 @default.
- W4312672145 hasConceptScore W4312672145C46312422 @default.
- W4312672145 hasConceptScore W4312672145C505870484 @default.
- W4312672145 hasConceptScore W4312672145C71924100 @default.
- W4312672145 hasConceptScore W4312672145C76155785 @default.
- W4312672145 hasConceptScore W4312672145C86803240 @default.
- W4312672145 hasConceptScore W4312672145C99454951 @default.
- W4312672145 hasIssue "4_Supplement" @default.
- W4312672145 hasLocation W43126721451 @default.
- W4312672145 hasOpenAccess W4312672145 @default.
- W4312672145 hasPrimaryLocation W43126721451 @default.
- W4312672145 hasRelatedWork W3014300295 @default.
- W4312672145 hasRelatedWork W3164822677 @default.
- W4312672145 hasRelatedWork W4223943233 @default.
- W4312672145 hasRelatedWork W4225161397 @default.
- W4312672145 hasRelatedWork W4250304930 @default.
- W4312672145 hasRelatedWork W4309045103 @default.
- W4312672145 hasRelatedWork W4312200629 @default.
- W4312672145 hasRelatedWork W4360585206 @default.
- W4312672145 hasRelatedWork W4364306694 @default.
- W4312672145 hasRelatedWork W4380086463 @default.
- W4312672145 hasVolume "152" @default.
- W4312672145 isParatext "false" @default.
- W4312672145 isRetracted "false" @default.
- W4312672145 workType "article" @default.