Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312692325> ?p ?o ?g. }
- W4312692325 endingPage "15" @default.
- W4312692325 startingPage "1" @default.
- W4312692325 abstract "Automatic surgical instrument segmentation is a necessary step for the steady operation of surgical robots, and the segmentation accuracy directly affects the surgical effect. Nevertheless, accurate surgical instrument segmentation from endoscopic images remains a challenging task due to the complex environment and instrument motion during surgery. Based on the encoder–decoder structure, a transformer-based multiscale fusion network, named TMF-Net, is proposed to address the difficulties in the area of surgical instrument segmentation. To realize the effective feature representation based on the pretrained ResNet34 and transformer and to strengthen both advantages of different encoder units, a dual-encoder unit is proposed to simultaneously learn the semantic relationship between adjacent pixels and distant pixels and comprehensively capture the global context information. Meanwhile, to retain more contextual information, a trapezoid atrous spatial pyramid pooling (trapezoid ASPP) block is proposed for feature enhancement of local features with different receptive fields to enrich feature information. Furthermore, in addition to multiscale surgical instruments in endoscopic images, a multiscale attention fusion (MAF) block is proposed to fuse multiscale feature maps to make the segmentation network direct more attention to the efficient channels so that it can improve the segmentation accuracy. Two typical datasets are used for performance analysis and verification, including Kvasir-Instrument and Endovis2017. Experimental results indicate that the proposed TMF-Net could effectively improve segmentation accuracy on surgical instruments, and it could also yield a competitive segmentation result in comparison with advanced detection methods." @default.
- W4312692325 created "2023-01-05" @default.
- W4312692325 creator A5033076846 @default.
- W4312692325 creator A5048032713 @default.
- W4312692325 creator A5053636309 @default.
- W4312692325 creator A5083916527 @default.
- W4312692325 date "2023-01-01" @default.
- W4312692325 modified "2023-09-27" @default.
- W4312692325 title "TMF-Net: A Transformer-Based Multiscale Fusion Network for Surgical Instrument Segmentation From Endoscopic Images" @default.
- W4312692325 cites W1903029394 @default.
- W4312692325 cites W2095675117 @default.
- W4312692325 cites W2161591779 @default.
- W4312692325 cites W2194775991 @default.
- W4312692325 cites W2412782625 @default.
- W4312692325 cites W2606004785 @default.
- W4312692325 cites W2752782242 @default.
- W4312692325 cites W2914806156 @default.
- W4312692325 cites W2942960215 @default.
- W4312692325 cites W2950986790 @default.
- W4312692325 cites W2963446712 @default.
- W4312692325 cites W2963881378 @default.
- W4312692325 cites W2979009279 @default.
- W4312692325 cites W2979328438 @default.
- W4312692325 cites W2979630916 @default.
- W4312692325 cites W2980225217 @default.
- W4312692325 cites W2996290406 @default.
- W4312692325 cites W2999580839 @default.
- W4312692325 cites W3007282815 @default.
- W4312692325 cites W3013198566 @default.
- W4312692325 cites W3025177399 @default.
- W4312692325 cites W3037536255 @default.
- W4312692325 cites W3081752372 @default.
- W4312692325 cites W3094374092 @default.
- W4312692325 cites W3095139243 @default.
- W4312692325 cites W3096812112 @default.
- W4312692325 cites W3106583357 @default.
- W4312692325 cites W3121882790 @default.
- W4312692325 cites W3122877105 @default.
- W4312692325 cites W3127470776 @default.
- W4312692325 cites W3129430687 @default.
- W4312692325 cites W3137223661 @default.
- W4312692325 cites W3162505601 @default.
- W4312692325 cites W3167360575 @default.
- W4312692325 cites W3168491317 @default.
- W4312692325 cites W3180624251 @default.
- W4312692325 cites W3206451052 @default.
- W4312692325 cites W3211350522 @default.
- W4312692325 cites W3215755954 @default.
- W4312692325 cites W4200015473 @default.
- W4312692325 cites W4200280587 @default.
- W4312692325 cites W4206794324 @default.
- W4312692325 cites W4214749209 @default.
- W4312692325 cites W4225909442 @default.
- W4312692325 cites W4287891028 @default.
- W4312692325 cites W4297399492 @default.
- W4312692325 cites W4297821389 @default.
- W4312692325 cites W4307296307 @default.
- W4312692325 cites W4312794844 @default.
- W4312692325 doi "https://doi.org/10.1109/tim.2022.3225922" @default.
- W4312692325 hasPublicationYear "2023" @default.
- W4312692325 type Work @default.
- W4312692325 citedByCount "1" @default.
- W4312692325 countsByYear W43126923252023 @default.
- W4312692325 crossrefType "journal-article" @default.
- W4312692325 hasAuthorship W4312692325A5033076846 @default.
- W4312692325 hasAuthorship W4312692325A5048032713 @default.
- W4312692325 hasAuthorship W4312692325A5053636309 @default.
- W4312692325 hasAuthorship W4312692325A5083916527 @default.
- W4312692325 hasConcept C111919701 @default.
- W4312692325 hasConcept C118505674 @default.
- W4312692325 hasConcept C124504099 @default.
- W4312692325 hasConcept C127413603 @default.
- W4312692325 hasConcept C138885662 @default.
- W4312692325 hasConcept C142575187 @default.
- W4312692325 hasConcept C153180895 @default.
- W4312692325 hasConcept C154945302 @default.
- W4312692325 hasConcept C160633673 @default.
- W4312692325 hasConcept C2524010 @default.
- W4312692325 hasConcept C25694479 @default.
- W4312692325 hasConcept C2776401178 @default.
- W4312692325 hasConcept C2778181360 @default.
- W4312692325 hasConcept C31972630 @default.
- W4312692325 hasConcept C33923547 @default.
- W4312692325 hasConcept C41008148 @default.
- W4312692325 hasConcept C41895202 @default.
- W4312692325 hasConcept C65885262 @default.
- W4312692325 hasConcept C70437156 @default.
- W4312692325 hasConcept C78519656 @default.
- W4312692325 hasConcept C89600930 @default.
- W4312692325 hasConceptScore W4312692325C111919701 @default.
- W4312692325 hasConceptScore W4312692325C118505674 @default.
- W4312692325 hasConceptScore W4312692325C124504099 @default.
- W4312692325 hasConceptScore W4312692325C127413603 @default.
- W4312692325 hasConceptScore W4312692325C138885662 @default.
- W4312692325 hasConceptScore W4312692325C142575187 @default.
- W4312692325 hasConceptScore W4312692325C153180895 @default.
- W4312692325 hasConceptScore W4312692325C154945302 @default.
- W4312692325 hasConceptScore W4312692325C160633673 @default.