Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312694564> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4312694564 endingPage "27" @default.
- W4312694564 startingPage "13" @default.
- W4312694564 abstract "In this paper, long-term wind power generation forecasting is accomplished using five different types of machine learning (ML) algorithms. Forecasting is done based on wind power generation dataset consisting of various parameters for a three-year horizon. The proposed work using ML algorithms forecasts accurate wind power generation values with high accuracy and efficiency. The acquired results unveil the performance and appropriateness of chosen ML algorithms for wind power prediction. Proposed ML algorithm can be efficiently used prior to the installation of wind power plants in an unfamiliar place to determine the corresponding wind potential. Proposed techniques can also be employed for power pooling, where using the forecasts, power generation can be easily determined. Most appropriate ML algorithm with the best performance is identified and fine-tuned for further optimization and improved performance. A graphical user interface application is proposed for easy wind power forecasting and in extended applications." @default.
- W4312694564 created "2023-01-05" @default.
- W4312694564 creator A5011031502 @default.
- W4312694564 creator A5042301033 @default.
- W4312694564 creator A5088992613 @default.
- W4312694564 date "2022-01-01" @default.
- W4312694564 modified "2023-10-15" @default.
- W4312694564 title "Power Generation Forecasting of Wind Farms Using Machine Learning Algorithms" @default.
- W4312694564 cites W2284726324 @default.
- W4312694564 cites W2355825618 @default.
- W4312694564 cites W2511683089 @default.
- W4312694564 cites W2729610675 @default.
- W4312694564 cites W2749526959 @default.
- W4312694564 cites W2767124238 @default.
- W4312694564 cites W2769156605 @default.
- W4312694564 cites W2775819639 @default.
- W4312694564 cites W2890324410 @default.
- W4312694564 cites W2891189860 @default.
- W4312694564 cites W2896920734 @default.
- W4312694564 cites W2897250207 @default.
- W4312694564 cites W2899717228 @default.
- W4312694564 cites W2901240220 @default.
- W4312694564 cites W2903162817 @default.
- W4312694564 cites W2914856364 @default.
- W4312694564 cites W2925057617 @default.
- W4312694564 cites W2935877504 @default.
- W4312694564 cites W2944801251 @default.
- W4312694564 cites W2964052759 @default.
- W4312694564 cites W2990134330 @default.
- W4312694564 cites W3044963726 @default.
- W4312694564 cites W3196746377 @default.
- W4312694564 cites W3200304500 @default.
- W4312694564 cites W4252245418 @default.
- W4312694564 doi "https://doi.org/10.1007/978-981-19-1653-3_2" @default.
- W4312694564 hasPublicationYear "2022" @default.
- W4312694564 type Work @default.
- W4312694564 citedByCount "0" @default.
- W4312694564 crossrefType "book-chapter" @default.
- W4312694564 hasAuthorship W4312694564A5011031502 @default.
- W4312694564 hasAuthorship W4312694564A5042301033 @default.
- W4312694564 hasAuthorship W4312694564A5088992613 @default.
- W4312694564 hasConcept C11413529 @default.
- W4312694564 hasConcept C119599485 @default.
- W4312694564 hasConcept C119857082 @default.
- W4312694564 hasConcept C121332964 @default.
- W4312694564 hasConcept C126255220 @default.
- W4312694564 hasConcept C127413603 @default.
- W4312694564 hasConcept C154945302 @default.
- W4312694564 hasConcept C163258240 @default.
- W4312694564 hasConcept C2781084341 @default.
- W4312694564 hasConcept C33923547 @default.
- W4312694564 hasConcept C41008148 @default.
- W4312694564 hasConcept C423512 @default.
- W4312694564 hasConcept C62520636 @default.
- W4312694564 hasConcept C70437156 @default.
- W4312694564 hasConcept C78600449 @default.
- W4312694564 hasConcept C89227174 @default.
- W4312694564 hasConceptScore W4312694564C11413529 @default.
- W4312694564 hasConceptScore W4312694564C119599485 @default.
- W4312694564 hasConceptScore W4312694564C119857082 @default.
- W4312694564 hasConceptScore W4312694564C121332964 @default.
- W4312694564 hasConceptScore W4312694564C126255220 @default.
- W4312694564 hasConceptScore W4312694564C127413603 @default.
- W4312694564 hasConceptScore W4312694564C154945302 @default.
- W4312694564 hasConceptScore W4312694564C163258240 @default.
- W4312694564 hasConceptScore W4312694564C2781084341 @default.
- W4312694564 hasConceptScore W4312694564C33923547 @default.
- W4312694564 hasConceptScore W4312694564C41008148 @default.
- W4312694564 hasConceptScore W4312694564C423512 @default.
- W4312694564 hasConceptScore W4312694564C62520636 @default.
- W4312694564 hasConceptScore W4312694564C70437156 @default.
- W4312694564 hasConceptScore W4312694564C78600449 @default.
- W4312694564 hasConceptScore W4312694564C89227174 @default.
- W4312694564 hasLocation W43126945641 @default.
- W4312694564 hasOpenAccess W4312694564 @default.
- W4312694564 hasPrimaryLocation W43126945641 @default.
- W4312694564 hasRelatedWork W2008873428 @default.
- W4312694564 hasRelatedWork W2049327723 @default.
- W4312694564 hasRelatedWork W2114471530 @default.
- W4312694564 hasRelatedWork W2137708704 @default.
- W4312694564 hasRelatedWork W2142241280 @default.
- W4312694564 hasRelatedWork W2362475571 @default.
- W4312694564 hasRelatedWork W2785587716 @default.
- W4312694564 hasRelatedWork W2992766068 @default.
- W4312694564 hasRelatedWork W3093454656 @default.
- W4312694564 hasRelatedWork W4312873028 @default.
- W4312694564 isParatext "false" @default.
- W4312694564 isRetracted "false" @default.
- W4312694564 workType "book-chapter" @default.