Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312695736> ?p ?o ?g. }
- W4312695736 endingPage "1342" @default.
- W4312695736 startingPage "1328" @default.
- W4312695736 abstract "Point cloud compression is an essential task for practical applications using point clouds. Most of the previous approaches rely on octree compression which involves voxelization in the coding itself. Distortions derived from voxelization can be reduced without increasing the bitrate by postprocessing. In this article, we propose a super-resolution method for a decoded voxelized point cloud as a postprocessing step in the geometry compression. The proposed method increases the resolution of the voxelized point cloud by predicting the occupancy of higher resolution voxels than those used to compress the original point cloud. For efficient prediction, we propose a deep neural network for super-resolution based on sparse convolution. It can be highly efficient even for a large point cloud since the network applies convolution only to nonempty space. The proposed method predicts the occupancies represented by continuous values for each point and estimates the binary occupancies through a thresholding procedure. We design a dynamic threshold to ensure that at least one of all voxels is predicted to be occupied in order to prevent the generation of regions with missing points. We also introduce an occupancy prediction method to address the sparsity of high-resolution occupied voxels. Experiments on the outdoor and indoor datasets demonstrate the effectiveness of the proposed method." @default.
- W4312695736 created "2023-01-05" @default.
- W4312695736 creator A5059507752 @default.
- W4312695736 creator A5061487218 @default.
- W4312695736 date "2023-01-15" @default.
- W4312695736 modified "2023-10-14" @default.
- W4312695736 title "Efficient Deep Super-Resolution of Voxelized Point Cloud in Geometry Compression" @default.
- W4312695736 cites W1995963656 @default.
- W4312695736 cites W2074954154 @default.
- W4312695736 cites W2119693472 @default.
- W4312695736 cites W2217530659 @default.
- W4312695736 cites W2319503556 @default.
- W4312695736 cites W2594519801 @default.
- W4312695736 cites W2617605942 @default.
- W4312695736 cites W2798314605 @default.
- W4312695736 cites W2917690002 @default.
- W4312695736 cites W2963048391 @default.
- W4312695736 cites W2963125977 @default.
- W4312695736 cites W2963680153 @default.
- W4312695736 cites W2963926543 @default.
- W4312695736 cites W2964287951 @default.
- W4312695736 cites W2964350391 @default.
- W4312695736 cites W2966379582 @default.
- W4312695736 cites W2970633157 @default.
- W4312695736 cites W2976304245 @default.
- W4312695736 cites W2981479471 @default.
- W4312695736 cites W2982170926 @default.
- W4312695736 cites W2991216808 @default.
- W4312695736 cites W2997337685 @default.
- W4312695736 cites W3014200484 @default.
- W4312695736 cites W3015385157 @default.
- W4312695736 cites W3015436753 @default.
- W4312695736 cites W3035428054 @default.
- W4312695736 cites W3091021773 @default.
- W4312695736 cites W3098518823 @default.
- W4312695736 cites W3113844551 @default.
- W4312695736 cites W3116896928 @default.
- W4312695736 cites W3117476483 @default.
- W4312695736 cites W3117771762 @default.
- W4312695736 cites W3128475240 @default.
- W4312695736 cites W3131242954 @default.
- W4312695736 cites W3132873709 @default.
- W4312695736 cites W3142353913 @default.
- W4312695736 cites W3159975835 @default.
- W4312695736 cites W3162952950 @default.
- W4312695736 cites W3169998800 @default.
- W4312695736 cites W3179630053 @default.
- W4312695736 cites W3188483917 @default.
- W4312695736 cites W3208392967 @default.
- W4312695736 cites W4214721726 @default.
- W4312695736 cites W4221156617 @default.
- W4312695736 cites W4226401360 @default.
- W4312695736 cites W4313151476 @default.
- W4312695736 doi "https://doi.org/10.1109/jsen.2022.3225170" @default.
- W4312695736 hasPublicationYear "2023" @default.
- W4312695736 type Work @default.
- W4312695736 citedByCount "0" @default.
- W4312695736 crossrefType "journal-article" @default.
- W4312695736 hasAuthorship W4312695736A5059507752 @default.
- W4312695736 hasAuthorship W4312695736A5061487218 @default.
- W4312695736 hasBestOaLocation W43126957361 @default.
- W4312695736 hasConcept C11413529 @default.
- W4312695736 hasConcept C115961682 @default.
- W4312695736 hasConcept C131979681 @default.
- W4312695736 hasConcept C141297171 @default.
- W4312695736 hasConcept C154945302 @default.
- W4312695736 hasConcept C191178318 @default.
- W4312695736 hasConcept C2524010 @default.
- W4312695736 hasConcept C28719098 @default.
- W4312695736 hasConcept C31972630 @default.
- W4312695736 hasConcept C33923547 @default.
- W4312695736 hasConcept C41008148 @default.
- W4312695736 hasConcept C45347329 @default.
- W4312695736 hasConcept C50644808 @default.
- W4312695736 hasConcept C54170458 @default.
- W4312695736 hasConcept C81363708 @default.
- W4312695736 hasConceptScore W4312695736C11413529 @default.
- W4312695736 hasConceptScore W4312695736C115961682 @default.
- W4312695736 hasConceptScore W4312695736C131979681 @default.
- W4312695736 hasConceptScore W4312695736C141297171 @default.
- W4312695736 hasConceptScore W4312695736C154945302 @default.
- W4312695736 hasConceptScore W4312695736C191178318 @default.
- W4312695736 hasConceptScore W4312695736C2524010 @default.
- W4312695736 hasConceptScore W4312695736C28719098 @default.
- W4312695736 hasConceptScore W4312695736C31972630 @default.
- W4312695736 hasConceptScore W4312695736C33923547 @default.
- W4312695736 hasConceptScore W4312695736C41008148 @default.
- W4312695736 hasConceptScore W4312695736C45347329 @default.
- W4312695736 hasConceptScore W4312695736C50644808 @default.
- W4312695736 hasConceptScore W4312695736C54170458 @default.
- W4312695736 hasConceptScore W4312695736C81363708 @default.
- W4312695736 hasIssue "2" @default.
- W4312695736 hasLocation W43126957361 @default.
- W4312695736 hasOpenAccess W4312695736 @default.
- W4312695736 hasPrimaryLocation W43126957361 @default.
- W4312695736 hasRelatedWork W2025797634 @default.
- W4312695736 hasRelatedWork W2055210187 @default.
- W4312695736 hasRelatedWork W2349347303 @default.