Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312697930> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4312697930 abstract "Performance metrics (Evaluation metrics or error metrics) are crucial components of regression analysis and machine learning-based prediction models. A performance metric can be defined as a logical and mathematical construct designed to measure how close the predicted outcome is to the actual result. A variety of performance metrics have been described and proposed in the literature. Knowledge about the metrics' properties needs to be systematized to simplify their design and use. In this work, we examine various regression related metrics (14 in total) for continuous variables, including the most widely used ones, such as the (root) mean squared error, the mean absolute error, the Pearson correlation coefficient, and the coefficient of determination, among many others. We provide their mathematical formulations, as well as a discussion on their use, their characteristics, advantages, disadvantages, and limitations, through theoretical analysis and a detailed numerical example. The 10 unitless metrics are further investigated through a numerical analysis with Monte Carlo Simulation based on (i) random guessing and (ii) the addition of random noise with various noise ratios to the predicted values. Some of the metrics show a poor or inconsistent performance, while others exhibit good performance as evaluation measures of the 'goodness of fit'. We highlight the importance of the usage of the right metrics to obtain good predictions in machine learning and regression models in general." @default.
- W4312697930 created "2023-01-05" @default.
- W4312697930 creator A5017227347 @default.
- W4312697930 creator A5027108383 @default.
- W4312697930 creator A5032651191 @default.
- W4312697930 creator A5072259078 @default.
- W4312697930 date "2022-01-01" @default.
- W4312697930 modified "2023-10-18" @default.
- W4312697930 title "Investigation of performance metrics in regression analysis and machine learning-based prediction models" @default.
- W4312697930 doi "https://doi.org/10.23967/eccomas.2022.155" @default.
- W4312697930 hasPublicationYear "2022" @default.
- W4312697930 type Work @default.
- W4312697930 citedByCount "14" @default.
- W4312697930 countsByYear W43126979302023 @default.
- W4312697930 crossrefType "proceedings-article" @default.
- W4312697930 hasAuthorship W4312697930A5017227347 @default.
- W4312697930 hasAuthorship W4312697930A5027108383 @default.
- W4312697930 hasAuthorship W4312697930A5032651191 @default.
- W4312697930 hasAuthorship W4312697930A5072259078 @default.
- W4312697930 hasBestOaLocation W43126979301 @default.
- W4312697930 hasConcept C105795698 @default.
- W4312697930 hasConcept C119857082 @default.
- W4312697930 hasConcept C124101348 @default.
- W4312697930 hasConcept C127413603 @default.
- W4312697930 hasConcept C139945424 @default.
- W4312697930 hasConcept C152877465 @default.
- W4312697930 hasConcept C154945302 @default.
- W4312697930 hasConcept C162324750 @default.
- W4312697930 hasConcept C169258074 @default.
- W4312697930 hasConcept C176217482 @default.
- W4312697930 hasConcept C187736073 @default.
- W4312697930 hasConcept C21547014 @default.
- W4312697930 hasConcept C2780009758 @default.
- W4312697930 hasConcept C2780092901 @default.
- W4312697930 hasConcept C2780898871 @default.
- W4312697930 hasConcept C33923547 @default.
- W4312697930 hasConcept C41008148 @default.
- W4312697930 hasConcept C48921125 @default.
- W4312697930 hasConcept C55078378 @default.
- W4312697930 hasConcept C83546350 @default.
- W4312697930 hasConceptScore W4312697930C105795698 @default.
- W4312697930 hasConceptScore W4312697930C119857082 @default.
- W4312697930 hasConceptScore W4312697930C124101348 @default.
- W4312697930 hasConceptScore W4312697930C127413603 @default.
- W4312697930 hasConceptScore W4312697930C139945424 @default.
- W4312697930 hasConceptScore W4312697930C152877465 @default.
- W4312697930 hasConceptScore W4312697930C154945302 @default.
- W4312697930 hasConceptScore W4312697930C162324750 @default.
- W4312697930 hasConceptScore W4312697930C169258074 @default.
- W4312697930 hasConceptScore W4312697930C176217482 @default.
- W4312697930 hasConceptScore W4312697930C187736073 @default.
- W4312697930 hasConceptScore W4312697930C21547014 @default.
- W4312697930 hasConceptScore W4312697930C2780009758 @default.
- W4312697930 hasConceptScore W4312697930C2780092901 @default.
- W4312697930 hasConceptScore W4312697930C2780898871 @default.
- W4312697930 hasConceptScore W4312697930C33923547 @default.
- W4312697930 hasConceptScore W4312697930C41008148 @default.
- W4312697930 hasConceptScore W4312697930C48921125 @default.
- W4312697930 hasConceptScore W4312697930C55078378 @default.
- W4312697930 hasConceptScore W4312697930C83546350 @default.
- W4312697930 hasLocation W43126979301 @default.
- W4312697930 hasOpenAccess W4312697930 @default.
- W4312697930 hasPrimaryLocation W43126979301 @default.
- W4312697930 hasRelatedWork W1482028569 @default.
- W4312697930 hasRelatedWork W204381461 @default.
- W4312697930 hasRelatedWork W2106328306 @default.
- W4312697930 hasRelatedWork W2375721435 @default.
- W4312697930 hasRelatedWork W2624501724 @default.
- W4312697930 hasRelatedWork W2784892907 @default.
- W4312697930 hasRelatedWork W3017119374 @default.
- W4312697930 hasRelatedWork W3042029886 @default.
- W4312697930 hasRelatedWork W4291492812 @default.
- W4312697930 hasRelatedWork W4308089479 @default.
- W4312697930 isParatext "false" @default.
- W4312697930 isRetracted "false" @default.
- W4312697930 workType "article" @default.