Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312702022> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4312702022 abstract "Artificial Intelligence (AI) and Machine Learning (ML) are becoming common in our daily lives. The AI-driven processes significantly affect us as individuals and as a society, spanning across ethical dimensions like discrimination, misinformation, and fraud. Several of these AI & ML approaches rely on Knowledge Graph (KG) data. Due to the large volume and complexity of today's KG-driven approaches, enormous resources are spent to utilize the complex AI approaches. Efficient usage of the resources like hardware and power consumption is essential for sustainable KG-based ML technologies. This paper introduces the ethical and sustainability considerations, challenges, and optimizations in the context of KG-based ML. We have grouped the ethical and sustainability aspects according to the typical Research & Development (R&D) lifecycle: an initial investigation of the AI approach's responsibility dimensions; technical system setup; central KG data analytics and curating; model selection, training, and evaluation; and final technology deployment. We also describe significant trade-offs and alternative options for dedicated scenarios enriched through existing and reported ethical and sustainability issues in AI-driven approaches and research. These include, e.g., efficient hardware usage guidelines; or the trade-off between transparency and accessibility compared to the risk of manipulability and privacy-related data disclosure. In addition, we propose how biased data and barely explainable AI can result in discriminating ML predictions. This work supports researchers and developers in reflecting, evaluating, and optimizing dedicated KG-based ML approaches in the dimensions of ethics and sustainability." @default.
- W4312702022 created "2023-01-05" @default.
- W4312702022 creator A5034642813 @default.
- W4312702022 creator A5067133778 @default.
- W4312702022 creator A5090201900 @default.
- W4312702022 date "2022-09-01" @default.
- W4312702022 modified "2023-09-30" @default.
- W4312702022 title "Ethical and Sustainability Considerations for Knowledge Graph based Machine Learning" @default.
- W4312702022 cites W1552847225 @default.
- W4312702022 cites W1870959433 @default.
- W4312702022 cites W2022166150 @default.
- W4312702022 cites W2080133951 @default.
- W4312702022 cites W2118960450 @default.
- W4312702022 cites W2171477123 @default.
- W4312702022 cites W2302501749 @default.
- W4312702022 cites W2767837247 @default.
- W4312702022 cites W277886906 @default.
- W4312702022 cites W2788788682 @default.
- W4312702022 cites W2802897269 @default.
- W4312702022 cites W2919193235 @default.
- W4312702022 cites W2941985495 @default.
- W4312702022 cites W2963809228 @default.
- W4312702022 cites W2964221236 @default.
- W4312702022 cites W2982378168 @default.
- W4312702022 cites W3029725182 @default.
- W4312702022 cites W3034225346 @default.
- W4312702022 cites W3035403290 @default.
- W4312702022 cites W3197511954 @default.
- W4312702022 cites W3210179814 @default.
- W4312702022 cites W3211044875 @default.
- W4312702022 cites W4239556602 @default.
- W4312702022 cites W4239696231 @default.
- W4312702022 doi "https://doi.org/10.1109/aike55402.2022.00015" @default.
- W4312702022 hasPublicationYear "2022" @default.
- W4312702022 type Work @default.
- W4312702022 citedByCount "1" @default.
- W4312702022 countsByYear W43127020222023 @default.
- W4312702022 crossrefType "proceedings-article" @default.
- W4312702022 hasAuthorship W4312702022A5034642813 @default.
- W4312702022 hasAuthorship W4312702022A5067133778 @default.
- W4312702022 hasAuthorship W4312702022A5090201900 @default.
- W4312702022 hasConcept C105339364 @default.
- W4312702022 hasConcept C115903868 @default.
- W4312702022 hasConcept C119857082 @default.
- W4312702022 hasConcept C151730666 @default.
- W4312702022 hasConcept C154945302 @default.
- W4312702022 hasConcept C18903297 @default.
- W4312702022 hasConcept C2522767166 @default.
- W4312702022 hasConcept C2779343474 @default.
- W4312702022 hasConcept C2780233690 @default.
- W4312702022 hasConcept C38652104 @default.
- W4312702022 hasConcept C41008148 @default.
- W4312702022 hasConcept C66204764 @default.
- W4312702022 hasConcept C86803240 @default.
- W4312702022 hasConceptScore W4312702022C105339364 @default.
- W4312702022 hasConceptScore W4312702022C115903868 @default.
- W4312702022 hasConceptScore W4312702022C119857082 @default.
- W4312702022 hasConceptScore W4312702022C151730666 @default.
- W4312702022 hasConceptScore W4312702022C154945302 @default.
- W4312702022 hasConceptScore W4312702022C18903297 @default.
- W4312702022 hasConceptScore W4312702022C2522767166 @default.
- W4312702022 hasConceptScore W4312702022C2779343474 @default.
- W4312702022 hasConceptScore W4312702022C2780233690 @default.
- W4312702022 hasConceptScore W4312702022C38652104 @default.
- W4312702022 hasConceptScore W4312702022C41008148 @default.
- W4312702022 hasConceptScore W4312702022C66204764 @default.
- W4312702022 hasConceptScore W4312702022C86803240 @default.
- W4312702022 hasLocation W43127020221 @default.
- W4312702022 hasOpenAccess W4312702022 @default.
- W4312702022 hasPrimaryLocation W43127020221 @default.
- W4312702022 hasRelatedWork W1969481115 @default.
- W4312702022 hasRelatedWork W2021850411 @default.
- W4312702022 hasRelatedWork W2961085424 @default.
- W4312702022 hasRelatedWork W3046775127 @default.
- W4312702022 hasRelatedWork W4285260836 @default.
- W4312702022 hasRelatedWork W4286629047 @default.
- W4312702022 hasRelatedWork W4306321456 @default.
- W4312702022 hasRelatedWork W4306674287 @default.
- W4312702022 hasRelatedWork W4312263439 @default.
- W4312702022 hasRelatedWork W4224009465 @default.
- W4312702022 isParatext "false" @default.
- W4312702022 isRetracted "false" @default.
- W4312702022 workType "article" @default.