Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312722023> ?p ?o ?g. }
- W4312722023 endingPage "5805" @default.
- W4312722023 startingPage "5791" @default.
- W4312722023 abstract "Many signals contain multiple components with time-varying instantaneous frequencies (IFs) which share a common trajectory trend, such as machinery vibration signals, speech signals, and biomedical signals. To analyze this kind of signals and achieve high time-frequency resolution, we propose a method called parameterized resampling time-frequency transform (PRTF transform) in this paper. Adapting the idea of the general parameterized time-frequency transform (GPTF transform), we use a parameterized kernel to represent a resampling function and further construct time-varying and time-invariant resampling operators to eliminate IF variations and relocate IF positions. These operators can improve the energy concentration of multiple components simultaneously in the time-frequency representation (TFR). Typical kernel functions containing the polynomial function and Fourier series are provided for different kinds of signals. A corresponding kernel estimation method is proposed to detect the shared trend of IFs by utilizing multiple components and to recursively approximate kernel parameters. Both numerical simulations and practical experiments show the effectiveness of the proposed method in improving the time-frequency resolution of TFRs for non-stationary multi-component signals." @default.
- W4312722023 created "2023-01-05" @default.
- W4312722023 creator A5012099844 @default.
- W4312722023 creator A5054306467 @default.
- W4312722023 creator A5073034733 @default.
- W4312722023 date "2022-01-01" @default.
- W4312722023 modified "2023-09-27" @default.
- W4312722023 title "Parameterized Resampling Time-Frequency Transform" @default.
- W4312722023 cites W1672619609 @default.
- W4312722023 cites W1761200639 @default.
- W4312722023 cites W1970066309 @default.
- W4312722023 cites W1971970149 @default.
- W4312722023 cites W1975538539 @default.
- W4312722023 cites W1978206812 @default.
- W4312722023 cites W1980721798 @default.
- W4312722023 cites W1982500096 @default.
- W4312722023 cites W1996021349 @default.
- W4312722023 cites W2007088219 @default.
- W4312722023 cites W2014305931 @default.
- W4312722023 cites W2020351623 @default.
- W4312722023 cites W2032583017 @default.
- W4312722023 cites W2073464062 @default.
- W4312722023 cites W2077140162 @default.
- W4312722023 cites W2083652170 @default.
- W4312722023 cites W2090218979 @default.
- W4312722023 cites W2092489135 @default.
- W4312722023 cites W2101564280 @default.
- W4312722023 cites W2108305838 @default.
- W4312722023 cites W2114492997 @default.
- W4312722023 cites W2117668484 @default.
- W4312722023 cites W2120865001 @default.
- W4312722023 cites W2127971633 @default.
- W4312722023 cites W2130765509 @default.
- W4312722023 cites W2140147143 @default.
- W4312722023 cites W2165597095 @default.
- W4312722023 cites W2166441336 @default.
- W4312722023 cites W2236256746 @default.
- W4312722023 cites W2520704801 @default.
- W4312722023 cites W2584551907 @default.
- W4312722023 cites W2609317876 @default.
- W4312722023 cites W2724359605 @default.
- W4312722023 cites W2736989556 @default.
- W4312722023 cites W2742644795 @default.
- W4312722023 cites W2884822408 @default.
- W4312722023 cites W2895594817 @default.
- W4312722023 cites W2897430850 @default.
- W4312722023 cites W2907186456 @default.
- W4312722023 cites W2921245937 @default.
- W4312722023 cites W2962915809 @default.
- W4312722023 cites W2962942190 @default.
- W4312722023 cites W2986268941 @default.
- W4312722023 cites W3048342131 @default.
- W4312722023 cites W3106793101 @default.
- W4312722023 cites W4240041021 @default.
- W4312722023 doi "https://doi.org/10.1109/tsp.2022.3220027" @default.
- W4312722023 hasPublicationYear "2022" @default.
- W4312722023 type Work @default.
- W4312722023 citedByCount "6" @default.
- W4312722023 countsByYear W43127220232023 @default.
- W4312722023 crossrefType "journal-article" @default.
- W4312722023 hasAuthorship W4312722023A5012099844 @default.
- W4312722023 hasAuthorship W4312722023A5054306467 @default.
- W4312722023 hasAuthorship W4312722023A5073034733 @default.
- W4312722023 hasConcept C102519508 @default.
- W4312722023 hasConcept C106131492 @default.
- W4312722023 hasConcept C11413529 @default.
- W4312722023 hasConcept C114614502 @default.
- W4312722023 hasConcept C124062153 @default.
- W4312722023 hasConcept C134306372 @default.
- W4312722023 hasConcept C137798554 @default.
- W4312722023 hasConcept C142433447 @default.
- W4312722023 hasConcept C150921843 @default.
- W4312722023 hasConcept C165464430 @default.
- W4312722023 hasConcept C31972630 @default.
- W4312722023 hasConcept C33923547 @default.
- W4312722023 hasConcept C41008148 @default.
- W4312722023 hasConcept C74193536 @default.
- W4312722023 hasConceptScore W4312722023C102519508 @default.
- W4312722023 hasConceptScore W4312722023C106131492 @default.
- W4312722023 hasConceptScore W4312722023C11413529 @default.
- W4312722023 hasConceptScore W4312722023C114614502 @default.
- W4312722023 hasConceptScore W4312722023C124062153 @default.
- W4312722023 hasConceptScore W4312722023C134306372 @default.
- W4312722023 hasConceptScore W4312722023C137798554 @default.
- W4312722023 hasConceptScore W4312722023C142433447 @default.
- W4312722023 hasConceptScore W4312722023C150921843 @default.
- W4312722023 hasConceptScore W4312722023C165464430 @default.
- W4312722023 hasConceptScore W4312722023C31972630 @default.
- W4312722023 hasConceptScore W4312722023C33923547 @default.
- W4312722023 hasConceptScore W4312722023C41008148 @default.
- W4312722023 hasConceptScore W4312722023C74193536 @default.
- W4312722023 hasFunder F4320321001 @default.
- W4312722023 hasFunder F4320329860 @default.
- W4312722023 hasFunder F4320336648 @default.
- W4312722023 hasLocation W43127220231 @default.
- W4312722023 hasOpenAccess W4312722023 @default.
- W4312722023 hasPrimaryLocation W43127220231 @default.
- W4312722023 hasRelatedWork W144047481 @default.