Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312745253> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4312745253 abstract "The dense nature of transportation networks expands the challenge of their visualization and processing. Several statistical backbone extraction techniques are proposed to reduce their size while keeping essential information. Here, we perform a comparative evaluation of seven prominent statistical backbone extraction techniques in the USA weighted air transportation network. One can classify the airports into hubs, spokes, and focus airports based on the business models used by the airlines. We compare the extracted backbones using various performance measures. We consider the number of components, sizes, the fraction of airport type, edge type, and weights preserved by each method. Results show that the Enhanced Configuration Model (ECM) Filter tends to preserve edges between spoke airports uncovering the infrastructure connecting the regional spoke airports. In contrast, the alternative filters (Disparity, Polya Urn, Marginal Likelihood, Noise Corrected, Global Statistical Significance (GLOSS), Locally Adaptive Network Sparsification (LANS)) highlight edges between the hub and spoke, focus and spoke, and spoke and spoke airports revealing more of the hub and spoke foundation used by airlines. Moreover, the Disparity Filter, Marginal Likelihood Filter, and Noise Corrected Filter preserve the highest proportion of weights while Polya Urn Filter and ECM Filter keep the lowest. The GLOSS and LANS Filters maintain a moderate fraction of weights between the two extremes." @default.
- W4312745253 created "2023-01-05" @default.
- W4312745253 creator A5005723915 @default.
- W4312745253 creator A5006125158 @default.
- W4312745253 creator A5045655458 @default.
- W4312745253 creator A5079753964 @default.
- W4312745253 date "2022-07-18" @default.
- W4312745253 modified "2023-10-14" @default.
- W4312745253 title "Exploring Statistical Backbone Filtering Techniques in the Air Transportation Network" @default.
- W4312745253 cites W1641881534 @default.
- W4312745253 cites W1965680834 @default.
- W4312745253 cites W1990365639 @default.
- W4312745253 cites W2038793346 @default.
- W4312745253 cites W2090867568 @default.
- W4312745253 cites W2092084789 @default.
- W4312745253 cites W2093924137 @default.
- W4312745253 cites W2097278341 @default.
- W4312745253 cites W2148015259 @default.
- W4312745253 cites W2466343398 @default.
- W4312745253 cites W2732493846 @default.
- W4312745253 cites W2790959153 @default.
- W4312745253 cites W2803154490 @default.
- W4312745253 cites W2883365145 @default.
- W4312745253 cites W3100666529 @default.
- W4312745253 cites W3104660771 @default.
- W4312745253 cites W3154037482 @default.
- W4312745253 cites W3176087376 @default.
- W4312745253 cites W3205654403 @default.
- W4312745253 cites W3215454678 @default.
- W4312745253 cites W4213429044 @default.
- W4312745253 doi "https://doi.org/10.1109/compeng50184.2022.9905432" @default.
- W4312745253 hasPublicationYear "2022" @default.
- W4312745253 type Work @default.
- W4312745253 citedByCount "0" @default.
- W4312745253 crossrefType "proceedings-article" @default.
- W4312745253 hasAuthorship W4312745253A5005723915 @default.
- W4312745253 hasAuthorship W4312745253A5006125158 @default.
- W4312745253 hasAuthorship W4312745253A5045655458 @default.
- W4312745253 hasAuthorship W4312745253A5079753964 @default.
- W4312745253 hasConcept C106131492 @default.
- W4312745253 hasConcept C120665830 @default.
- W4312745253 hasConcept C121332964 @default.
- W4312745253 hasConcept C192209626 @default.
- W4312745253 hasConcept C31972630 @default.
- W4312745253 hasConcept C41008148 @default.
- W4312745253 hasConcept C76155785 @default.
- W4312745253 hasConcept C88796919 @default.
- W4312745253 hasConceptScore W4312745253C106131492 @default.
- W4312745253 hasConceptScore W4312745253C120665830 @default.
- W4312745253 hasConceptScore W4312745253C121332964 @default.
- W4312745253 hasConceptScore W4312745253C192209626 @default.
- W4312745253 hasConceptScore W4312745253C31972630 @default.
- W4312745253 hasConceptScore W4312745253C41008148 @default.
- W4312745253 hasConceptScore W4312745253C76155785 @default.
- W4312745253 hasConceptScore W4312745253C88796919 @default.
- W4312745253 hasLocation W43127452531 @default.
- W4312745253 hasOpenAccess W4312745253 @default.
- W4312745253 hasPrimaryLocation W43127452531 @default.
- W4312745253 hasRelatedWork W1498222248 @default.
- W4312745253 hasRelatedWork W1546415126 @default.
- W4312745253 hasRelatedWork W1584420410 @default.
- W4312745253 hasRelatedWork W2015192756 @default.
- W4312745253 hasRelatedWork W2087409148 @default.
- W4312745253 hasRelatedWork W2120815133 @default.
- W4312745253 hasRelatedWork W2367451036 @default.
- W4312745253 hasRelatedWork W2899084033 @default.
- W4312745253 hasRelatedWork W4249271267 @default.
- W4312745253 hasRelatedWork W2751656612 @default.
- W4312745253 isParatext "false" @default.
- W4312745253 isRetracted "false" @default.
- W4312745253 workType "article" @default.