Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312751581> ?p ?o ?g. }
- W4312751581 endingPage "39" @default.
- W4312751581 startingPage "27" @default.
- W4312751581 abstract "The current deep neural networks used for crowd density estimation face two main problems. First, due to different surveillance distance from the camera, densely populated regions are characterized by dramatic scale change, thus using vanilla convolution kernels for feature extraction will inevitably miss discriminative information and reduce the accuracy of crowd density estimation results. Second, popular networks for crowd density estimation still depend on complex encoders with a large number of parameters, and adopt fixed convolutional kernels to extract image features at different spatial positions, resulting in spatial-invariance and computation-heavy. To remedy the above problems, in this paper, we propose a Dynamic yet Lightweight Multi-Pyramid Network (DLMP-Net) for crowd density estimation. The proposed DLMP-Net mainly makes two contributions. First, we design a shuffle-pyramid feature extraction and fusion module (SPFFM), which employs multi-dilated convolution to extract and fuse various scale features. In addition, we add group and channel shuffle operation to reduce the model complexity and improve the efficiency of feature fusion. Second, we introduce a Dynamic Bottleneck Block (DBB), which predicts exclusive kernels pixel by pixel and channel by channel dynamically conditioned on an input, boosting the model performance while decreasing the number of parameters. Experiments are conducted on five datasets: ShanghaiTech dataset, UCF_CC_50 dataset, UCF_QRNF dataset, GCC dataset and NWPU dataset and the ablation studies are performed on ShanghaiTech dataset. The final results show that the proposed DLMP-Net can effectively overcome the problems mentioned above and provides high crowd counting accuracy with smaller model size than state-of-the-art networks." @default.
- W4312751581 created "2023-01-05" @default.
- W4312751581 creator A5005038425 @default.
- W4312751581 creator A5010643037 @default.
- W4312751581 creator A5010931477 @default.
- W4312751581 creator A5036558091 @default.
- W4312751581 creator A5045647883 @default.
- W4312751581 creator A5063017060 @default.
- W4312751581 creator A5079177940 @default.
- W4312751581 date "2022-01-01" @default.
- W4312751581 modified "2023-09-23" @default.
- W4312751581 title "DLMP-Net: A Dynamic Yet Lightweight Multi-pyramid Network for Crowd Density Estimation" @default.
- W4312751581 cites W2072232009 @default.
- W4312751581 cites W2108598243 @default.
- W4312751581 cites W2463631526 @default.
- W4312751581 cites W2531409750 @default.
- W4312751581 cites W2741077351 @default.
- W4312751581 cites W2752782242 @default.
- W4312751581 cites W2883780447 @default.
- W4312751581 cites W2886443245 @default.
- W4312751581 cites W2963035940 @default.
- W4312751581 cites W2963693541 @default.
- W4312751581 cites W2964209782 @default.
- W4312751581 cites W2966893608 @default.
- W4312751581 cites W2967069910 @default.
- W4312751581 cites W2982014038 @default.
- W4312751581 cites W3034421924 @default.
- W4312751581 cites W3167975111 @default.
- W4312751581 cites W3177349073 @default.
- W4312751581 cites W3181848549 @default.
- W4312751581 doi "https://doi.org/10.1007/978-3-031-18916-6_3" @default.
- W4312751581 hasPublicationYear "2022" @default.
- W4312751581 type Work @default.
- W4312751581 citedByCount "0" @default.
- W4312751581 crossrefType "book-chapter" @default.
- W4312751581 hasAuthorship W4312751581A5005038425 @default.
- W4312751581 hasAuthorship W4312751581A5010643037 @default.
- W4312751581 hasAuthorship W4312751581A5010931477 @default.
- W4312751581 hasAuthorship W4312751581A5036558091 @default.
- W4312751581 hasAuthorship W4312751581A5045647883 @default.
- W4312751581 hasAuthorship W4312751581A5063017060 @default.
- W4312751581 hasAuthorship W4312751581A5079177940 @default.
- W4312751581 hasConcept C105795698 @default.
- W4312751581 hasConcept C11413529 @default.
- W4312751581 hasConcept C127162648 @default.
- W4312751581 hasConcept C138885662 @default.
- W4312751581 hasConcept C142575187 @default.
- W4312751581 hasConcept C149635348 @default.
- W4312751581 hasConcept C153180895 @default.
- W4312751581 hasConcept C154945302 @default.
- W4312751581 hasConcept C160633673 @default.
- W4312751581 hasConcept C185429906 @default.
- W4312751581 hasConcept C189508267 @default.
- W4312751581 hasConcept C2524010 @default.
- W4312751581 hasConcept C2776401178 @default.
- W4312751581 hasConcept C2780513914 @default.
- W4312751581 hasConcept C31258907 @default.
- W4312751581 hasConcept C33923547 @default.
- W4312751581 hasConcept C41008148 @default.
- W4312751581 hasConcept C41895202 @default.
- W4312751581 hasConcept C45347329 @default.
- W4312751581 hasConcept C45374587 @default.
- W4312751581 hasConcept C50644808 @default.
- W4312751581 hasConcept C52622490 @default.
- W4312751581 hasConcept C81363708 @default.
- W4312751581 hasConcept C97931131 @default.
- W4312751581 hasConceptScore W4312751581C105795698 @default.
- W4312751581 hasConceptScore W4312751581C11413529 @default.
- W4312751581 hasConceptScore W4312751581C127162648 @default.
- W4312751581 hasConceptScore W4312751581C138885662 @default.
- W4312751581 hasConceptScore W4312751581C142575187 @default.
- W4312751581 hasConceptScore W4312751581C149635348 @default.
- W4312751581 hasConceptScore W4312751581C153180895 @default.
- W4312751581 hasConceptScore W4312751581C154945302 @default.
- W4312751581 hasConceptScore W4312751581C160633673 @default.
- W4312751581 hasConceptScore W4312751581C185429906 @default.
- W4312751581 hasConceptScore W4312751581C189508267 @default.
- W4312751581 hasConceptScore W4312751581C2524010 @default.
- W4312751581 hasConceptScore W4312751581C2776401178 @default.
- W4312751581 hasConceptScore W4312751581C2780513914 @default.
- W4312751581 hasConceptScore W4312751581C31258907 @default.
- W4312751581 hasConceptScore W4312751581C33923547 @default.
- W4312751581 hasConceptScore W4312751581C41008148 @default.
- W4312751581 hasConceptScore W4312751581C41895202 @default.
- W4312751581 hasConceptScore W4312751581C45347329 @default.
- W4312751581 hasConceptScore W4312751581C45374587 @default.
- W4312751581 hasConceptScore W4312751581C50644808 @default.
- W4312751581 hasConceptScore W4312751581C52622490 @default.
- W4312751581 hasConceptScore W4312751581C81363708 @default.
- W4312751581 hasConceptScore W4312751581C97931131 @default.
- W4312751581 hasLocation W43127515811 @default.
- W4312751581 hasOpenAccess W4312751581 @default.
- W4312751581 hasPrimaryLocation W43127515811 @default.
- W4312751581 hasRelatedWork W2136485282 @default.
- W4312751581 hasRelatedWork W2404514746 @default.
- W4312751581 hasRelatedWork W2406522397 @default.
- W4312751581 hasRelatedWork W2518599539 @default.
- W4312751581 hasRelatedWork W2546871836 @default.