Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312768061> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4312768061 abstract "Many strategies of segmentation of medical images are based on supervised voxel classification. These approaches usually work best if a training kit is given that describes the test images by line. However, complications may occur in training and analyzing results, such as due to variations in scanners, procedures, or patient classes, which follow different distributions. Even under the circumstances, weighing pictures based on delivery similarities has demonstrated a substantial improvement in inefficiency. This suggests that part of the training examples represents test information; it makes non-representative data more comparable. Thus, we analyze kernel education to minimize distinctions between training and test data and investigate an additional benefit for picture weighting in kernel learning. Furthermore, we suggest a new image measurement process, minimizing the maximum mean difference between training and test results, improving image weight, and kernel joint optimization. Brain tissue tests, a brain structure lesion, and personalization of the skin suggest that heterogeneous data efficiency significantly boosts both kernel learning and picture weighting when used separately. In this case, MMD weighting works in a manner close to the imaging approaches previously indicated. Integrating picture measurement and matrix modeling will lead to minor performance enhancements, either independently or jointly optimized." @default.
- W4312768061 created "2023-01-05" @default.
- W4312768061 creator A5004604613 @default.
- W4312768061 creator A5063332614 @default.
- W4312768061 creator A5072261829 @default.
- W4312768061 creator A5085359944 @default.
- W4312768061 date "2022-01-01" @default.
- W4312768061 modified "2023-10-14" @default.
- W4312768061 title "Medical image learning by integrating image grade and kernel processing into feature extraction" @default.
- W4312768061 cites W1987869189 @default.
- W4312768061 cites W2018017287 @default.
- W4312768061 cites W2041732401 @default.
- W4312768061 cites W2070208792 @default.
- W4312768061 cites W2102653483 @default.
- W4312768061 cites W2120149881 @default.
- W4312768061 cites W2437180782 @default.
- W4312768061 cites W3167586740 @default.
- W4312768061 cites W3174384244 @default.
- W4312768061 cites W3180400824 @default.
- W4312768061 cites W3182906273 @default.
- W4312768061 cites W4239510810 @default.
- W4312768061 doi "https://doi.org/10.1063/5.0109761" @default.
- W4312768061 hasPublicationYear "2022" @default.
- W4312768061 type Work @default.
- W4312768061 citedByCount "0" @default.
- W4312768061 crossrefType "proceedings-article" @default.
- W4312768061 hasAuthorship W4312768061A5004604613 @default.
- W4312768061 hasAuthorship W4312768061A5063332614 @default.
- W4312768061 hasAuthorship W4312768061A5072261829 @default.
- W4312768061 hasAuthorship W4312768061A5085359944 @default.
- W4312768061 hasBestOaLocation W43127680611 @default.
- W4312768061 hasConcept C111919701 @default.
- W4312768061 hasConcept C114614502 @default.
- W4312768061 hasConcept C119857082 @default.
- W4312768061 hasConcept C124504099 @default.
- W4312768061 hasConcept C126838900 @default.
- W4312768061 hasConcept C153180895 @default.
- W4312768061 hasConcept C154945302 @default.
- W4312768061 hasConcept C183115368 @default.
- W4312768061 hasConcept C31972630 @default.
- W4312768061 hasConcept C33923547 @default.
- W4312768061 hasConcept C41008148 @default.
- W4312768061 hasConcept C71924100 @default.
- W4312768061 hasConcept C74193536 @default.
- W4312768061 hasConcept C89600930 @default.
- W4312768061 hasConcept C98045186 @default.
- W4312768061 hasConceptScore W4312768061C111919701 @default.
- W4312768061 hasConceptScore W4312768061C114614502 @default.
- W4312768061 hasConceptScore W4312768061C119857082 @default.
- W4312768061 hasConceptScore W4312768061C124504099 @default.
- W4312768061 hasConceptScore W4312768061C126838900 @default.
- W4312768061 hasConceptScore W4312768061C153180895 @default.
- W4312768061 hasConceptScore W4312768061C154945302 @default.
- W4312768061 hasConceptScore W4312768061C183115368 @default.
- W4312768061 hasConceptScore W4312768061C31972630 @default.
- W4312768061 hasConceptScore W4312768061C33923547 @default.
- W4312768061 hasConceptScore W4312768061C41008148 @default.
- W4312768061 hasConceptScore W4312768061C71924100 @default.
- W4312768061 hasConceptScore W4312768061C74193536 @default.
- W4312768061 hasConceptScore W4312768061C89600930 @default.
- W4312768061 hasConceptScore W4312768061C98045186 @default.
- W4312768061 hasLocation W43127680611 @default.
- W4312768061 hasOpenAccess W4312768061 @default.
- W4312768061 hasPrimaryLocation W43127680611 @default.
- W4312768061 hasRelatedWork W1507266234 @default.
- W4312768061 hasRelatedWork W1631910785 @default.
- W4312768061 hasRelatedWork W1669643531 @default.
- W4312768061 hasRelatedWork W1721780360 @default.
- W4312768061 hasRelatedWork W2110230079 @default.
- W4312768061 hasRelatedWork W2117664411 @default.
- W4312768061 hasRelatedWork W2117933325 @default.
- W4312768061 hasRelatedWork W2122581818 @default.
- W4312768061 hasRelatedWork W2159066190 @default.
- W4312768061 hasRelatedWork W2739874619 @default.
- W4312768061 isParatext "false" @default.
- W4312768061 isRetracted "false" @default.
- W4312768061 workType "article" @default.