Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312776629> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4312776629 endingPage "296" @default.
- W4312776629 startingPage "282" @default.
- W4312776629 abstract "Prostate cancer is the second-most frequently diagnosed cancer and the sixth leading cause of cancer death in males worldwide. The main problem that specialists face during the diagnosis of prostate cancer is the localization of Regions of Interest (ROI) containing a tumor tissue. Currently, the segmentation of this ROI in most cases is carried out manually by expert doctors, but the procedure is plagued with low detection rates (of about 27–44%) or over-diagnosis in some patients. Therefore, several research works have tackled the challenge of automatically segmenting and extracting features of the ROI from magnetic resonance images, as this process can greatly facilitate many diagnostic and therapeutic applications. However, the lack of clear prostate boundaries, the heterogeneity inherent to the prostate tissue, and the variety of prostate shapes makes this process very difficult to automate.In this work, six deep learning models were trained and analyzed with a dataset of MRI images obtained from the Centre Hospitalaire de Dijon and Universitat Politecnica de Catalunya. We carried out a comparison of multiple deep learning models (i.e. U-Net, Attention U-Net, Dense-UNet, Attention Dense-UNet, R2U-Net, and Attention R2U-Net) using categorical cross-entropy loss function. The analysis was performed using three metrics commonly used for image segmentation: Dice score, Jaccard index, and mean squared error. The model that give us the best result segmenting all the zones was R2U-Net, which achieved 0.869, 0.782, and 0.00013 for Dice, Jaccard and mean squared error, respectively." @default.
- W4312776629 created "2023-01-05" @default.
- W4312776629 creator A5016665371 @default.
- W4312776629 creator A5033024566 @default.
- W4312776629 creator A5044516813 @default.
- W4312776629 creator A5079763757 @default.
- W4312776629 creator A5089265253 @default.
- W4312776629 date "2022-01-01" @default.
- W4312776629 modified "2023-09-30" @default.
- W4312776629 title "Comparison of Automatic Prostate Zones Segmentation Models in MRI Images Using U-net-like Architectures" @default.
- W4312776629 cites W1901129140 @default.
- W4312776629 cites W1909740415 @default.
- W4312776629 cites W1968747769 @default.
- W4312776629 cites W2014449032 @default.
- W4312776629 cites W2065875833 @default.
- W4312776629 cites W2105796115 @default.
- W4312776629 cites W2215104678 @default.
- W4312776629 cites W2533800772 @default.
- W4312776629 cites W2604785265 @default.
- W4312776629 cites W2616891469 @default.
- W4312776629 cites W2905338897 @default.
- W4312776629 cites W2913182391 @default.
- W4312776629 cites W2927175382 @default.
- W4312776629 cites W2928133111 @default.
- W4312776629 cites W2937343562 @default.
- W4312776629 cites W2939917862 @default.
- W4312776629 cites W2944539652 @default.
- W4312776629 cites W2964334073 @default.
- W4312776629 cites W2995681261 @default.
- W4312776629 cites W3081623163 @default.
- W4312776629 cites W3083247992 @default.
- W4312776629 cites W3100816363 @default.
- W4312776629 cites W3122868258 @default.
- W4312776629 cites W3148401590 @default.
- W4312776629 cites W3160412534 @default.
- W4312776629 cites W4210697829 @default.
- W4312776629 doi "https://doi.org/10.1007/978-3-031-19493-1_23" @default.
- W4312776629 hasPublicationYear "2022" @default.
- W4312776629 type Work @default.
- W4312776629 citedByCount "0" @default.
- W4312776629 crossrefType "book-chapter" @default.
- W4312776629 hasAuthorship W4312776629A5016665371 @default.
- W4312776629 hasAuthorship W4312776629A5033024566 @default.
- W4312776629 hasAuthorship W4312776629A5044516813 @default.
- W4312776629 hasAuthorship W4312776629A5079763757 @default.
- W4312776629 hasAuthorship W4312776629A5089265253 @default.
- W4312776629 hasBestOaLocation W43127766292 @default.
- W4312776629 hasConcept C105795698 @default.
- W4312776629 hasConcept C121608353 @default.
- W4312776629 hasConcept C124504099 @default.
- W4312776629 hasConcept C126322002 @default.
- W4312776629 hasConcept C153180895 @default.
- W4312776629 hasConcept C154945302 @default.
- W4312776629 hasConcept C163892561 @default.
- W4312776629 hasConcept C19609008 @default.
- W4312776629 hasConcept C203519979 @default.
- W4312776629 hasConcept C22029948 @default.
- W4312776629 hasConcept C2780192828 @default.
- W4312776629 hasConcept C33923547 @default.
- W4312776629 hasConcept C41008148 @default.
- W4312776629 hasConcept C71924100 @default.
- W4312776629 hasConcept C89600930 @default.
- W4312776629 hasConceptScore W4312776629C105795698 @default.
- W4312776629 hasConceptScore W4312776629C121608353 @default.
- W4312776629 hasConceptScore W4312776629C124504099 @default.
- W4312776629 hasConceptScore W4312776629C126322002 @default.
- W4312776629 hasConceptScore W4312776629C153180895 @default.
- W4312776629 hasConceptScore W4312776629C154945302 @default.
- W4312776629 hasConceptScore W4312776629C163892561 @default.
- W4312776629 hasConceptScore W4312776629C19609008 @default.
- W4312776629 hasConceptScore W4312776629C203519979 @default.
- W4312776629 hasConceptScore W4312776629C22029948 @default.
- W4312776629 hasConceptScore W4312776629C2780192828 @default.
- W4312776629 hasConceptScore W4312776629C33923547 @default.
- W4312776629 hasConceptScore W4312776629C41008148 @default.
- W4312776629 hasConceptScore W4312776629C71924100 @default.
- W4312776629 hasConceptScore W4312776629C89600930 @default.
- W4312776629 hasLocation W43127766291 @default.
- W4312776629 hasLocation W43127766292 @default.
- W4312776629 hasOpenAccess W4312776629 @default.
- W4312776629 hasPrimaryLocation W43127766291 @default.
- W4312776629 hasRelatedWork W1899274600 @default.
- W4312776629 hasRelatedWork W2130346638 @default.
- W4312776629 hasRelatedWork W2630229246 @default.
- W4312776629 hasRelatedWork W2789826769 @default.
- W4312776629 hasRelatedWork W2914580601 @default.
- W4312776629 hasRelatedWork W2998885888 @default.
- W4312776629 hasRelatedWork W3116883888 @default.
- W4312776629 hasRelatedWork W3152950745 @default.
- W4312776629 hasRelatedWork W3198334642 @default.
- W4312776629 hasRelatedWork W4283263789 @default.
- W4312776629 isParatext "false" @default.
- W4312776629 isRetracted "false" @default.
- W4312776629 workType "book-chapter" @default.