Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312790897> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4312790897 abstract "Human skeletal remains are an immense source of data to describe human biodiversity with an intrinsic complexity due to the multifactorial origin of human variability. Evolution and ontogeny produced complex patterns of variation through contingent events and adaptations. Multivariate approaches have been widely adopted in physical anthropology; however, at present, Artificial Intelligence algorithms have scarcely been applied to such datasets. Data analysis techniques based on Artificial Intelligence algorithms have shown to be suitable in many different fields, from engineering and medicine up to cultural heritage and Egyptology. In this work we aim to show how Machine Learning algorithms can be applied in the field of anthropology, using the W.W. Howells dataset of cranial measurements, limited to the analysis of African populations. Principal Component Analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), Spectral Embedding and Uniform Manifold Approximation and Projection (UMAP) were used for dimensionality reduction, along with supervised and unsupervised methods to explore and quantify the differences due to ancestry and sex in the skulls of African populations. Algorithms such as Support Vector Machines and the unsupervised DBSCAN were applied to the data in order to quantify this similarity. This strategy allows a discrimination of sex and ancestry (about 85% of accuracy for both) in human remains, ultimately opening up new routes for anthropological research." @default.
- W4312790897 created "2023-01-05" @default.
- W4312790897 creator A5043854182 @default.
- W4312790897 creator A5043871541 @default.
- W4312790897 creator A5065648210 @default.
- W4312790897 creator A5067825197 @default.
- W4312790897 creator A5072346347 @default.
- W4312790897 date "2022-07-18" @default.
- W4312790897 modified "2023-10-16" @default.
- W4312790897 title "Exploring the complexity of African populations variability with Machine Learning" @default.
- W4312790897 doi "https://doi.org/10.1109/compeng50184.2022.9905451" @default.
- W4312790897 hasPublicationYear "2022" @default.
- W4312790897 type Work @default.
- W4312790897 citedByCount "0" @default.
- W4312790897 crossrefType "proceedings-article" @default.
- W4312790897 hasAuthorship W4312790897A5043854182 @default.
- W4312790897 hasAuthorship W4312790897A5043871541 @default.
- W4312790897 hasAuthorship W4312790897A5065648210 @default.
- W4312790897 hasAuthorship W4312790897A5067825197 @default.
- W4312790897 hasAuthorship W4312790897A5072346347 @default.
- W4312790897 hasBestOaLocation W43127908972 @default.
- W4312790897 hasConcept C119857082 @default.
- W4312790897 hasConcept C12267149 @default.
- W4312790897 hasConcept C151876577 @default.
- W4312790897 hasConcept C153180895 @default.
- W4312790897 hasConcept C154945302 @default.
- W4312790897 hasConcept C166957645 @default.
- W4312790897 hasConcept C197698901 @default.
- W4312790897 hasConcept C202444582 @default.
- W4312790897 hasConcept C205649164 @default.
- W4312790897 hasConcept C27438332 @default.
- W4312790897 hasConcept C2778626561 @default.
- W4312790897 hasConcept C33923547 @default.
- W4312790897 hasConcept C41008148 @default.
- W4312790897 hasConcept C41608201 @default.
- W4312790897 hasConcept C70518039 @default.
- W4312790897 hasConcept C8038995 @default.
- W4312790897 hasConcept C9652623 @default.
- W4312790897 hasConceptScore W4312790897C119857082 @default.
- W4312790897 hasConceptScore W4312790897C12267149 @default.
- W4312790897 hasConceptScore W4312790897C151876577 @default.
- W4312790897 hasConceptScore W4312790897C153180895 @default.
- W4312790897 hasConceptScore W4312790897C154945302 @default.
- W4312790897 hasConceptScore W4312790897C166957645 @default.
- W4312790897 hasConceptScore W4312790897C197698901 @default.
- W4312790897 hasConceptScore W4312790897C202444582 @default.
- W4312790897 hasConceptScore W4312790897C205649164 @default.
- W4312790897 hasConceptScore W4312790897C27438332 @default.
- W4312790897 hasConceptScore W4312790897C2778626561 @default.
- W4312790897 hasConceptScore W4312790897C33923547 @default.
- W4312790897 hasConceptScore W4312790897C41008148 @default.
- W4312790897 hasConceptScore W4312790897C41608201 @default.
- W4312790897 hasConceptScore W4312790897C70518039 @default.
- W4312790897 hasConceptScore W4312790897C8038995 @default.
- W4312790897 hasConceptScore W4312790897C9652623 @default.
- W4312790897 hasLocation W43127908971 @default.
- W4312790897 hasLocation W43127908972 @default.
- W4312790897 hasOpenAccess W4312790897 @default.
- W4312790897 hasPrimaryLocation W43127908971 @default.
- W4312790897 hasRelatedWork W1535715103 @default.
- W4312790897 hasRelatedWork W2068726834 @default.
- W4312790897 hasRelatedWork W2093197981 @default.
- W4312790897 hasRelatedWork W2128363075 @default.
- W4312790897 hasRelatedWork W2139206098 @default.
- W4312790897 hasRelatedWork W2586648678 @default.
- W4312790897 hasRelatedWork W295200900 @default.
- W4312790897 hasRelatedWork W2971451848 @default.
- W4312790897 hasRelatedWork W4214939513 @default.
- W4312790897 hasRelatedWork W4318240129 @default.
- W4312790897 isParatext "false" @default.
- W4312790897 isRetracted "false" @default.
- W4312790897 workType "article" @default.