Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312793054> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4312793054 endingPage "1840" @default.
- W4312793054 startingPage "1831" @default.
- W4312793054 abstract "Abstract Random Fourier features represent one of the most influential and wide-spread techniques in machine learning to scale up kernel algorithms. As the methods based on random Fourier approximation of the kernel function can overcome the shortcomings of machine learning methods that require a large number of labeled sample, it is effective to be applied to the practical areas where samples are difficult to obtain. Network traffic forwarding policy making is one such practical application, and it is widely concerned in the programmable networks. With the advantages of kernel techniques and random Fourier features, this paper proposes an application of network traffic forwarding policy making method based on random Fourier approximation of kernel function in programmable networks to realize traffic forwarding policy making to improve the security of networks. The core of the method is to map traffic forwarding features to Hilbert high-dimensional space through random Fourier transform, and then uses the principle of maximum interval to detect adversarial samples. Compared with the traditional kernel function method, it improves the algorithm efficiency from square efficiency to linear efficiency. The AUC on the data set from real-world network reached 0.9984, showing that the method proposed can realize traffic forwarding policy making effectively to improve the security of programmable networks." @default.
- W4312793054 created "2023-01-05" @default.
- W4312793054 creator A5021917638 @default.
- W4312793054 creator A5030683962 @default.
- W4312793054 creator A5034627122 @default.
- W4312793054 creator A5056155684 @default.
- W4312793054 creator A5063916829 @default.
- W4312793054 creator A5071672663 @default.
- W4312793054 date "2022-07-15" @default.
- W4312793054 modified "2023-10-01" @default.
- W4312793054 title "Random Fourier Approximation of the Kernel Function in Programmable Networks" @default.
- W4312793054 cites W1983291981 @default.
- W4312793054 cites W1986280275 @default.
- W4312793054 cites W1998044687 @default.
- W4312793054 cites W2033244207 @default.
- W4312793054 cites W2040340473 @default.
- W4312793054 cites W2059450064 @default.
- W4312793054 cites W2065207200 @default.
- W4312793054 cites W2101674911 @default.
- W4312793054 cites W2125560635 @default.
- W4312793054 cites W2137959503 @default.
- W4312793054 cites W2155653793 @default.
- W4312793054 cites W2561978763 @default.
- W4312793054 cites W2754157234 @default.
- W4312793054 cites W2794025702 @default.
- W4312793054 cites W2954394215 @default.
- W4312793054 cites W2962937842 @default.
- W4312793054 cites W3041464168 @default.
- W4312793054 cites W3046300977 @default.
- W4312793054 cites W3134888992 @default.
- W4312793054 cites W3176138526 @default.
- W4312793054 cites W3210496168 @default.
- W4312793054 cites W3213692590 @default.
- W4312793054 cites W4210867910 @default.
- W4312793054 doi "https://doi.org/10.2478/amns.2022.2.0172" @default.
- W4312793054 hasPublicationYear "2022" @default.
- W4312793054 type Work @default.
- W4312793054 citedByCount "0" @default.
- W4312793054 crossrefType "journal-article" @default.
- W4312793054 hasAuthorship W4312793054A5021917638 @default.
- W4312793054 hasAuthorship W4312793054A5030683962 @default.
- W4312793054 hasAuthorship W4312793054A5034627122 @default.
- W4312793054 hasAuthorship W4312793054A5056155684 @default.
- W4312793054 hasAuthorship W4312793054A5063916829 @default.
- W4312793054 hasAuthorship W4312793054A5071672663 @default.
- W4312793054 hasBestOaLocation W43127930541 @default.
- W4312793054 hasConcept C102519508 @default.
- W4312793054 hasConcept C11413529 @default.
- W4312793054 hasConcept C118615104 @default.
- W4312793054 hasConcept C134306372 @default.
- W4312793054 hasConcept C14036430 @default.
- W4312793054 hasConcept C33923547 @default.
- W4312793054 hasConcept C41008148 @default.
- W4312793054 hasConcept C74193536 @default.
- W4312793054 hasConcept C78458016 @default.
- W4312793054 hasConcept C86803240 @default.
- W4312793054 hasConceptScore W4312793054C102519508 @default.
- W4312793054 hasConceptScore W4312793054C11413529 @default.
- W4312793054 hasConceptScore W4312793054C118615104 @default.
- W4312793054 hasConceptScore W4312793054C134306372 @default.
- W4312793054 hasConceptScore W4312793054C14036430 @default.
- W4312793054 hasConceptScore W4312793054C33923547 @default.
- W4312793054 hasConceptScore W4312793054C41008148 @default.
- W4312793054 hasConceptScore W4312793054C74193536 @default.
- W4312793054 hasConceptScore W4312793054C78458016 @default.
- W4312793054 hasConceptScore W4312793054C86803240 @default.
- W4312793054 hasIssue "1" @default.
- W4312793054 hasLocation W43127930541 @default.
- W4312793054 hasOpenAccess W4312793054 @default.
- W4312793054 hasPrimaryLocation W43127930541 @default.
- W4312793054 hasRelatedWork W1464256629 @default.
- W4312793054 hasRelatedWork W1984486271 @default.
- W4312793054 hasRelatedWork W2051277525 @default.
- W4312793054 hasRelatedWork W2116168671 @default.
- W4312793054 hasRelatedWork W2367480220 @default.
- W4312793054 hasRelatedWork W2370622958 @default.
- W4312793054 hasRelatedWork W2386767533 @default.
- W4312793054 hasRelatedWork W3098582471 @default.
- W4312793054 hasRelatedWork W4230772827 @default.
- W4312793054 hasRelatedWork W4250047567 @default.
- W4312793054 hasVolume "8" @default.
- W4312793054 isParatext "false" @default.
- W4312793054 isRetracted "false" @default.
- W4312793054 workType "article" @default.