Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312794002> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4312794002 abstract "Abstract Twelve climate models and observations are used to attribute the global mean surface temperature (GMST) changes from 1900 to 2014 to external climate forcings. The external forcings are decomposed into the effects of the well-mixed greenhouse gas concentration variation, the effects of anthropogenic aerosol concentration changes, and the effects of natural forcings. First, a convolutional neural network (CNN) is trained to estimate the simulated historical GMST from single-forcing experiments using outputs from the multi-model ensemble. We then use this CNN to solve the attribution problem using an original variational inversion approach. The variational inversion is first validated using historical climate simulations as pseudo-observations. Then we perform an inversion from observations. This provides a distribution of the GMST resulting from the three forcings. For 2014, inversions estimate that the greenhouse gases changes are responsible for a GMST anomaly within [0.8 $ {}^{circ } $ C,1.9 $ {}^{circ } $ C], while anthropogenic aerosols and natural forcings anomalies are within [−0.7 $ {}^{circ } $ C,−0.1 $ {}^{circ } $ C] and [−0.1 $ {}^{circ } $ C,0.3 $ {}^{circ } $ C], respectively. The method designed here can be adapted and extended to attribute the changes of other variables or to focus on the regional scale." @default.
- W4312794002 created "2023-01-05" @default.
- W4312794002 creator A5014233387 @default.
- W4312794002 creator A5042022387 @default.
- W4312794002 creator A5081770339 @default.
- W4312794002 creator A5086752907 @default.
- W4312794002 date "2022-01-01" @default.
- W4312794002 modified "2023-10-17" @default.
- W4312794002 title "Detection and attribution of climate change: A deep learning and variational approach" @default.
- W4312794002 cites W1975241912 @default.
- W4312794002 cites W1976319295 @default.
- W4312794002 cites W2006165291 @default.
- W4312794002 cites W2029884299 @default.
- W4312794002 cites W2031027346 @default.
- W4312794002 cites W2043117177 @default.
- W4312794002 cites W2071611036 @default.
- W4312794002 cites W2124901782 @default.
- W4312794002 cites W2193503481 @default.
- W4312794002 cites W2400836904 @default.
- W4312794002 cites W2538117061 @default.
- W4312794002 cites W2789458634 @default.
- W4312794002 cites W2913323966 @default.
- W4312794002 cites W3030536251 @default.
- W4312794002 cites W3040695841 @default.
- W4312794002 cites W3123700158 @default.
- W4312794002 cites W3215158554 @default.
- W4312794002 doi "https://doi.org/10.1017/eds.2022.17" @default.
- W4312794002 hasPublicationYear "2022" @default.
- W4312794002 type Work @default.
- W4312794002 citedByCount "0" @default.
- W4312794002 crossrefType "journal-article" @default.
- W4312794002 hasAuthorship W4312794002A5014233387 @default.
- W4312794002 hasAuthorship W4312794002A5042022387 @default.
- W4312794002 hasAuthorship W4312794002A5081770339 @default.
- W4312794002 hasAuthorship W4312794002A5086752907 @default.
- W4312794002 hasBestOaLocation W43127940021 @default.
- W4312794002 hasConcept C109007969 @default.
- W4312794002 hasConcept C111368507 @default.
- W4312794002 hasConcept C121332964 @default.
- W4312794002 hasConcept C127313418 @default.
- W4312794002 hasConcept C12997251 @default.
- W4312794002 hasConcept C132651083 @default.
- W4312794002 hasConcept C151730666 @default.
- W4312794002 hasConcept C168754636 @default.
- W4312794002 hasConcept C1893757 @default.
- W4312794002 hasConcept C197115733 @default.
- W4312794002 hasConcept C26873012 @default.
- W4312794002 hasConcept C39432304 @default.
- W4312794002 hasConcept C47737302 @default.
- W4312794002 hasConcept C49204034 @default.
- W4312794002 hasConcept C91586092 @default.
- W4312794002 hasConceptScore W4312794002C109007969 @default.
- W4312794002 hasConceptScore W4312794002C111368507 @default.
- W4312794002 hasConceptScore W4312794002C121332964 @default.
- W4312794002 hasConceptScore W4312794002C127313418 @default.
- W4312794002 hasConceptScore W4312794002C12997251 @default.
- W4312794002 hasConceptScore W4312794002C132651083 @default.
- W4312794002 hasConceptScore W4312794002C151730666 @default.
- W4312794002 hasConceptScore W4312794002C168754636 @default.
- W4312794002 hasConceptScore W4312794002C1893757 @default.
- W4312794002 hasConceptScore W4312794002C197115733 @default.
- W4312794002 hasConceptScore W4312794002C26873012 @default.
- W4312794002 hasConceptScore W4312794002C39432304 @default.
- W4312794002 hasConceptScore W4312794002C47737302 @default.
- W4312794002 hasConceptScore W4312794002C49204034 @default.
- W4312794002 hasConceptScore W4312794002C91586092 @default.
- W4312794002 hasLocation W43127940021 @default.
- W4312794002 hasLocation W43127940022 @default.
- W4312794002 hasLocation W43127940023 @default.
- W4312794002 hasOpenAccess W4312794002 @default.
- W4312794002 hasPrimaryLocation W43127940021 @default.
- W4312794002 hasRelatedWork W13367279 @default.
- W4312794002 hasRelatedWork W2045623209 @default.
- W4312794002 hasRelatedWork W2060606417 @default.
- W4312794002 hasRelatedWork W2474431918 @default.
- W4312794002 hasRelatedWork W257491802 @default.
- W4312794002 hasRelatedWork W2599971815 @default.
- W4312794002 hasRelatedWork W2949231297 @default.
- W4312794002 hasRelatedWork W3081468937 @default.
- W4312794002 hasRelatedWork W4244855350 @default.
- W4312794002 hasRelatedWork W2898107337 @default.
- W4312794002 hasVolume "1" @default.
- W4312794002 isParatext "false" @default.
- W4312794002 isRetracted "false" @default.
- W4312794002 workType "article" @default.