Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312800510> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4312800510 endingPage "138" @default.
- W4312800510 startingPage "133" @default.
- W4312800510 abstract "Purpose: This research aims to identify content that contains cyberbullying on Twitter. We also conducted a comparative study of several classification algorithms, namely NB, DT, LR, and SVM. The dataset we use comes from Twitter data which is then manually labeled and validated by language experts. This study used 1065 data with a label distribution, namely 638 data with a non-bullying label and 427 with a bullying label.Methods: The weighting process for each word uses the bag of word (BOW) method, which uses three weighting features. The three-word vector weighting features used include unigram, bigram, and trigram. The experiment was conducted with two scenarios, namely testing to find the best accuracy value with the three features. The following scenario looks at the overall comparison of the algorithm's performance against all the features used.Result: The experimental results show that for the measurement of accuracy weighting based on features and algorithms, the SVM classification algorithm outperformed other algorithms with a percentage of 76%. Then for the weighting based on the average recall, the DT classification algorithm outperformed the other algorithms by an average of 76%. Another test for measuring overall performance (F-measure) based on accuracy and precision, the SVM classification algorithm, managed to outperform other algorithms with an F-measure of 82%.Value: Based on several experiments conducted, the SVM classification algorithm can detect words containing cyberbullying on social media." @default.
- W4312800510 created "2023-01-05" @default.
- W4312800510 creator A5010738176 @default.
- W4312800510 creator A5012446925 @default.
- W4312800510 creator A5015980805 @default.
- W4312800510 date "2022-10-17" @default.
- W4312800510 modified "2023-09-30" @default.
- W4312800510 title "A Comparative Analysis of Classification Algorithms for Cyberbullying Crime Detection: An Experimental Study of Twitter Social Media in Indonesia" @default.
- W4312800510 doi "https://doi.org/10.15294/sji.v9i2.35149" @default.
- W4312800510 hasPublicationYear "2022" @default.
- W4312800510 type Work @default.
- W4312800510 citedByCount "1" @default.
- W4312800510 countsByYear W43128005102023 @default.
- W4312800510 crossrefType "journal-article" @default.
- W4312800510 hasAuthorship W4312800510A5010738176 @default.
- W4312800510 hasAuthorship W4312800510A5012446925 @default.
- W4312800510 hasAuthorship W4312800510A5015980805 @default.
- W4312800510 hasBestOaLocation W43128005101 @default.
- W4312800510 hasConcept C108757681 @default.
- W4312800510 hasConcept C110083411 @default.
- W4312800510 hasConcept C11413529 @default.
- W4312800510 hasConcept C119857082 @default.
- W4312800510 hasConcept C12267149 @default.
- W4312800510 hasConcept C124101348 @default.
- W4312800510 hasConcept C126838900 @default.
- W4312800510 hasConcept C136764020 @default.
- W4312800510 hasConcept C137546455 @default.
- W4312800510 hasConcept C153180895 @default.
- W4312800510 hasConcept C154945302 @default.
- W4312800510 hasConcept C183115368 @default.
- W4312800510 hasConcept C2524010 @default.
- W4312800510 hasConcept C33923547 @default.
- W4312800510 hasConcept C41008148 @default.
- W4312800510 hasConcept C518677369 @default.
- W4312800510 hasConcept C71924100 @default.
- W4312800510 hasConcept C81669768 @default.
- W4312800510 hasConcept C90805587 @default.
- W4312800510 hasConceptScore W4312800510C108757681 @default.
- W4312800510 hasConceptScore W4312800510C110083411 @default.
- W4312800510 hasConceptScore W4312800510C11413529 @default.
- W4312800510 hasConceptScore W4312800510C119857082 @default.
- W4312800510 hasConceptScore W4312800510C12267149 @default.
- W4312800510 hasConceptScore W4312800510C124101348 @default.
- W4312800510 hasConceptScore W4312800510C126838900 @default.
- W4312800510 hasConceptScore W4312800510C136764020 @default.
- W4312800510 hasConceptScore W4312800510C137546455 @default.
- W4312800510 hasConceptScore W4312800510C153180895 @default.
- W4312800510 hasConceptScore W4312800510C154945302 @default.
- W4312800510 hasConceptScore W4312800510C183115368 @default.
- W4312800510 hasConceptScore W4312800510C2524010 @default.
- W4312800510 hasConceptScore W4312800510C33923547 @default.
- W4312800510 hasConceptScore W4312800510C41008148 @default.
- W4312800510 hasConceptScore W4312800510C518677369 @default.
- W4312800510 hasConceptScore W4312800510C71924100 @default.
- W4312800510 hasConceptScore W4312800510C81669768 @default.
- W4312800510 hasConceptScore W4312800510C90805587 @default.
- W4312800510 hasIssue "2" @default.
- W4312800510 hasLocation W43128005101 @default.
- W4312800510 hasOpenAccess W4312800510 @default.
- W4312800510 hasPrimaryLocation W43128005101 @default.
- W4312800510 hasRelatedWork W2065905229 @default.
- W4312800510 hasRelatedWork W2105046837 @default.
- W4312800510 hasRelatedWork W2122904773 @default.
- W4312800510 hasRelatedWork W2158522709 @default.
- W4312800510 hasRelatedWork W2294192051 @default.
- W4312800510 hasRelatedWork W2548482495 @default.
- W4312800510 hasRelatedWork W2950765678 @default.
- W4312800510 hasRelatedWork W4288374102 @default.
- W4312800510 hasRelatedWork W4312800510 @default.
- W4312800510 hasRelatedWork W4316658362 @default.
- W4312800510 hasVolume "9" @default.
- W4312800510 isParatext "false" @default.
- W4312800510 isRetracted "false" @default.
- W4312800510 workType "article" @default.