Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312802831> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4312802831 endingPage "117476" @default.
- W4312802831 startingPage "117469" @default.
- W4312802831 abstract "As a basic feature extraction method, convolutional neural networks have some information loss problems when dealing with sequence problems, and a temporal convolutional network can compensate for this problem. Howerover, ordinary temporal convolutional networks can not deal well protein secondary structure prediction because of their one-way analysis. Therefore, we propose an integrated deep learning model called Convoluntional-Bidirectional Temporal Convolutional Network. for 3-state and 8-state protein secondary structure predictions based on a convolutional neural network and bidirectional temporal convolutional networks. Because the model combines the advantages of the convolutional neural network and bidirectional temporal convolution network, it can not only capture the local correlation in the amino acid sequence but also analyse the long-distance interaction in the amino acid sequence. Therefore, this model can effectively improve the accuracy of protein secondary structure predictions. The experimental results show that the combination of convolutional neural network and bidirectional temporal convolutional network is effective for predicting protein secondary structure." @default.
- W4312802831 created "2023-01-05" @default.
- W4312802831 creator A5040417215 @default.
- W4312802831 creator A5046418047 @default.
- W4312802831 creator A5076556804 @default.
- W4312802831 date "2022-01-01" @default.
- W4312802831 modified "2023-09-26" @default.
- W4312802831 title "Convolution-Bidirectional Temporal Convolutional Network for Protein Secondary Structure Prediction" @default.
- W4312802831 cites W1982375100 @default.
- W4312802831 cites W1983633134 @default.
- W4312802831 cites W2016044020 @default.
- W4312802831 cites W2041673452 @default.
- W4312802831 cites W2051872583 @default.
- W4312802831 cites W2104972430 @default.
- W4312802831 cites W2109801072 @default.
- W4312802831 cites W2122181892 @default.
- W4312802831 cites W2130132457 @default.
- W4312802831 cites W2146551903 @default.
- W4312802831 cites W2153187042 @default.
- W4312802831 cites W2587692085 @default.
- W4312802831 cites W2607268717 @default.
- W4312802831 cites W2782796222 @default.
- W4312802831 cites W2791790018 @default.
- W4312802831 cites W2951092885 @default.
- W4312802831 cites W2963457143 @default.
- W4312802831 cites W3035772797 @default.
- W4312802831 cites W3127336123 @default.
- W4312802831 cites W3198971594 @default.
- W4312802831 cites W3199104097 @default.
- W4312802831 cites W3199799076 @default.
- W4312802831 cites W4249279051 @default.
- W4312802831 doi "https://doi.org/10.1109/access.2022.3219490" @default.
- W4312802831 hasPublicationYear "2022" @default.
- W4312802831 type Work @default.
- W4312802831 citedByCount "0" @default.
- W4312802831 crossrefType "journal-article" @default.
- W4312802831 hasAuthorship W4312802831A5040417215 @default.
- W4312802831 hasAuthorship W4312802831A5046418047 @default.
- W4312802831 hasAuthorship W4312802831A5076556804 @default.
- W4312802831 hasBestOaLocation W43128028311 @default.
- W4312802831 hasConcept C108583219 @default.
- W4312802831 hasConcept C147168706 @default.
- W4312802831 hasConcept C153180895 @default.
- W4312802831 hasConcept C154945302 @default.
- W4312802831 hasConcept C2778112365 @default.
- W4312802831 hasConcept C41008148 @default.
- W4312802831 hasConcept C45347329 @default.
- W4312802831 hasConcept C50644808 @default.
- W4312802831 hasConcept C54355233 @default.
- W4312802831 hasConcept C81363708 @default.
- W4312802831 hasConcept C86803240 @default.
- W4312802831 hasConceptScore W4312802831C108583219 @default.
- W4312802831 hasConceptScore W4312802831C147168706 @default.
- W4312802831 hasConceptScore W4312802831C153180895 @default.
- W4312802831 hasConceptScore W4312802831C154945302 @default.
- W4312802831 hasConceptScore W4312802831C2778112365 @default.
- W4312802831 hasConceptScore W4312802831C41008148 @default.
- W4312802831 hasConceptScore W4312802831C45347329 @default.
- W4312802831 hasConceptScore W4312802831C50644808 @default.
- W4312802831 hasConceptScore W4312802831C54355233 @default.
- W4312802831 hasConceptScore W4312802831C81363708 @default.
- W4312802831 hasConceptScore W4312802831C86803240 @default.
- W4312802831 hasFunder F4320321001 @default.
- W4312802831 hasFunder F4320324174 @default.
- W4312802831 hasLocation W43128028311 @default.
- W4312802831 hasOpenAccess W4312802831 @default.
- W4312802831 hasPrimaryLocation W43128028311 @default.
- W4312802831 hasRelatedWork W2731899572 @default.
- W4312802831 hasRelatedWork W2999805992 @default.
- W4312802831 hasRelatedWork W3011074480 @default.
- W4312802831 hasRelatedWork W3116150086 @default.
- W4312802831 hasRelatedWork W3133861977 @default.
- W4312802831 hasRelatedWork W3192840557 @default.
- W4312802831 hasRelatedWork W4200173597 @default.
- W4312802831 hasRelatedWork W4291897433 @default.
- W4312802831 hasRelatedWork W4312417841 @default.
- W4312802831 hasRelatedWork W4321369474 @default.
- W4312802831 hasVolume "10" @default.
- W4312802831 isParatext "false" @default.
- W4312802831 isRetracted "false" @default.
- W4312802831 workType "article" @default.