Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312826035> ?p ?o ?g. }
- W4312826035 endingPage "283" @default.
- W4312826035 startingPage "270" @default.
- W4312826035 abstract "Accurate breast cancer diagnosis through mammography has the potential to save millions of lives around the world. Deep learning (DL) methods have shown to be very effective for mass detection in mammograms Additional improvements of current DL models will further improve the effectiveness of these methods. A critical issue in this context is how to pick the right hyperparameters for DL models. In this paper, we present GA-E2E, a new approach for tuning the hyperparameters of DL models for breast cancer detection using Genetic Algorithms (GAs). Our findings reveal that differences in parameter values can considerably alter the area under the curve (AUC), which is used to determine a classifier’s performance." @default.
- W4312826035 created "2023-01-05" @default.
- W4312826035 creator A5016844866 @default.
- W4312826035 creator A5060555317 @default.
- W4312826035 creator A5071743459 @default.
- W4312826035 creator A5074713109 @default.
- W4312826035 date "2022-01-01" @default.
- W4312826035 modified "2023-09-22" @default.
- W4312826035 title "Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms" @default.
- W4312826035 cites W1541288193 @default.
- W4312826035 cites W1917647701 @default.
- W4312826035 cites W1982151790 @default.
- W4312826035 cites W2030069582 @default.
- W4312826035 cites W2044690837 @default.
- W4312826035 cites W2054975983 @default.
- W4312826035 cites W2084161499 @default.
- W4312826035 cites W2084369411 @default.
- W4312826035 cites W2097419638 @default.
- W4312826035 cites W2099189269 @default.
- W4312826035 cites W2106805319 @default.
- W4312826035 cites W2136922672 @default.
- W4312826035 cites W2151163048 @default.
- W4312826035 cites W2153734103 @default.
- W4312826035 cites W2155329254 @default.
- W4312826035 cites W2194775991 @default.
- W4312826035 cites W2295256730 @default.
- W4312826035 cites W2493683088 @default.
- W4312826035 cites W2560617851 @default.
- W4312826035 cites W2776937175 @default.
- W4312826035 cites W2896485798 @default.
- W4312826035 cites W2901743512 @default.
- W4312826035 cites W2902965010 @default.
- W4312826035 cites W2918598741 @default.
- W4312826035 cites W2919115771 @default.
- W4312826035 cites W2935588605 @default.
- W4312826035 cites W2982316372 @default.
- W4312826035 cites W2987597555 @default.
- W4312826035 cites W2993303538 @default.
- W4312826035 cites W304373761 @default.
- W4312826035 cites W3104792420 @default.
- W4312826035 cites W4250503569 @default.
- W4312826035 cites W4320029005 @default.
- W4312826035 doi "https://doi.org/10.1007/978-3-031-20716-7_21" @default.
- W4312826035 hasPublicationYear "2022" @default.
- W4312826035 type Work @default.
- W4312826035 citedByCount "0" @default.
- W4312826035 crossrefType "book-chapter" @default.
- W4312826035 hasAuthorship W4312826035A5016844866 @default.
- W4312826035 hasAuthorship W4312826035A5060555317 @default.
- W4312826035 hasAuthorship W4312826035A5071743459 @default.
- W4312826035 hasAuthorship W4312826035A5074713109 @default.
- W4312826035 hasBestOaLocation W43128260352 @default.
- W4312826035 hasConcept C10485038 @default.
- W4312826035 hasConcept C108583219 @default.
- W4312826035 hasConcept C119857082 @default.
- W4312826035 hasConcept C121608353 @default.
- W4312826035 hasConcept C12267149 @default.
- W4312826035 hasConcept C126322002 @default.
- W4312826035 hasConcept C151730666 @default.
- W4312826035 hasConcept C153180895 @default.
- W4312826035 hasConcept C154945302 @default.
- W4312826035 hasConcept C2779343474 @default.
- W4312826035 hasConcept C2780472235 @default.
- W4312826035 hasConcept C41008148 @default.
- W4312826035 hasConcept C530470458 @default.
- W4312826035 hasConcept C71924100 @default.
- W4312826035 hasConcept C8642999 @default.
- W4312826035 hasConcept C86803240 @default.
- W4312826035 hasConcept C95623464 @default.
- W4312826035 hasConceptScore W4312826035C10485038 @default.
- W4312826035 hasConceptScore W4312826035C108583219 @default.
- W4312826035 hasConceptScore W4312826035C119857082 @default.
- W4312826035 hasConceptScore W4312826035C121608353 @default.
- W4312826035 hasConceptScore W4312826035C12267149 @default.
- W4312826035 hasConceptScore W4312826035C126322002 @default.
- W4312826035 hasConceptScore W4312826035C151730666 @default.
- W4312826035 hasConceptScore W4312826035C153180895 @default.
- W4312826035 hasConceptScore W4312826035C154945302 @default.
- W4312826035 hasConceptScore W4312826035C2779343474 @default.
- W4312826035 hasConceptScore W4312826035C2780472235 @default.
- W4312826035 hasConceptScore W4312826035C41008148 @default.
- W4312826035 hasConceptScore W4312826035C530470458 @default.
- W4312826035 hasConceptScore W4312826035C71924100 @default.
- W4312826035 hasConceptScore W4312826035C8642999 @default.
- W4312826035 hasConceptScore W4312826035C86803240 @default.
- W4312826035 hasConceptScore W4312826035C95623464 @default.
- W4312826035 hasLocation W43128260351 @default.
- W4312826035 hasLocation W43128260352 @default.
- W4312826035 hasOpenAccess W4312826035 @default.
- W4312826035 hasPrimaryLocation W43128260351 @default.
- W4312826035 hasRelatedWork W3047644063 @default.
- W4312826035 hasRelatedWork W3121832479 @default.
- W4312826035 hasRelatedWork W4280535922 @default.
- W4312826035 hasRelatedWork W4281616679 @default.
- W4312826035 hasRelatedWork W4283697347 @default.
- W4312826035 hasRelatedWork W4291365775 @default.
- W4312826035 hasRelatedWork W4295309597 @default.
- W4312826035 hasRelatedWork W4298144215 @default.