Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312830031> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W4312830031 abstract "In recent years, with the continuous development of new energy technology, the integration of various new energy power and the popularization of more and more sophisticated electrical instruments, the detection and management of harmonics in the power system has become an urgent problem to be solved. There are a large number of semiconductor materials and asymmetric loads in the system, and the traditional harmonic detection methods are getting worse and worse in the harmonic detection of hybrid new energy power systems. Although the ensemble empirical mode decomposition method has a certain separation effect on harmonics, the spatial and temporal distribution of harmonics in the hybrid power system is quite different, and the artificially set decomposition parameters cannot obtain the optimal decomposition results. In this paper, combined with deep neural network, we propose a harmonic separation detection method that realizes adaptive ensemble empirical mode decomposition by using deep neural network to train an adaptive model. Experiments show that this method can effectively improve the adaptability of the detection system, and can further simplify the detection process and reduce the detection time on the premise of effectively and reasonably separating and detecting each harmonic." @default.
- W4312830031 created "2023-01-05" @default.
- W4312830031 creator A5006651636 @default.
- W4312830031 creator A5086989815 @default.
- W4312830031 date "2022-10-20" @default.
- W4312830031 modified "2023-09-27" @default.
- W4312830031 title "Adaptive harmonic separation and detection algorithm based on deep neural network" @default.
- W4312830031 doi "https://doi.org/10.1117/12.2656953" @default.
- W4312830031 hasPublicationYear "2022" @default.
- W4312830031 type Work @default.
- W4312830031 citedByCount "0" @default.
- W4312830031 crossrefType "proceedings-article" @default.
- W4312830031 hasAuthorship W4312830031A5006651636 @default.
- W4312830031 hasAuthorship W4312830031A5086989815 @default.
- W4312830031 hasConcept C11413529 @default.
- W4312830031 hasConcept C119857082 @default.
- W4312830031 hasConcept C154945302 @default.
- W4312830031 hasConcept C2776061190 @default.
- W4312830031 hasConcept C2776864781 @default.
- W4312830031 hasConcept C41008148 @default.
- W4312830031 hasConcept C50644808 @default.
- W4312830031 hasConceptScore W4312830031C11413529 @default.
- W4312830031 hasConceptScore W4312830031C119857082 @default.
- W4312830031 hasConceptScore W4312830031C154945302 @default.
- W4312830031 hasConceptScore W4312830031C2776061190 @default.
- W4312830031 hasConceptScore W4312830031C2776864781 @default.
- W4312830031 hasConceptScore W4312830031C41008148 @default.
- W4312830031 hasConceptScore W4312830031C50644808 @default.
- W4312830031 hasLocation W43128300311 @default.
- W4312830031 hasOpenAccess W4312830031 @default.
- W4312830031 hasPrimaryLocation W43128300311 @default.
- W4312830031 hasRelatedWork W1990163517 @default.
- W4312830031 hasRelatedWork W2056898041 @default.
- W4312830031 hasRelatedWork W2144624426 @default.
- W4312830031 hasRelatedWork W2167313314 @default.
- W4312830031 hasRelatedWork W2186379385 @default.
- W4312830031 hasRelatedWork W2320677145 @default.
- W4312830031 hasRelatedWork W2365834727 @default.
- W4312830031 hasRelatedWork W2367459392 @default.
- W4312830031 hasRelatedWork W2371085214 @default.
- W4312830031 hasRelatedWork W2467372948 @default.
- W4312830031 isParatext "false" @default.
- W4312830031 isRetracted "false" @default.
- W4312830031 workType "article" @default.