Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312832593> ?p ?o ?g. }
- W4312832593 endingPage "9324" @default.
- W4312832593 startingPage "9314" @default.
- W4312832593 abstract "Classification of electroencephalogram-based motor imagery (MI-EEG) tasks is crucial in brain–computer interface (BCI). EEG signals require a large number of channels in the acquisition process, which hinders its application in practice. How to select the optimal channel subset without a serious impact on the classification performance is an urgent problem to be solved in the field of BCIs. This article proposes an end-to-end deep learning framework, called EEG channel active inference neural network (EEG-ARNN), which is based on graph convolutional neural networks (GCN) to fully exploit the correlation of signals in the temporal and spatial domains. Two channel selection methods, i.e., edge-selection (ES) and aggregation-selection (AS), are proposed to select a specified number of optimal channels automatically. Two publicly available BCI Competition IV 2a (BCICIV 2a) dataset and PhysioNet dataset and a self-collected dataset (TJU dataset) are used to evaluate the performance of the proposed method. Experimental results reveal that the proposed method outperforms state-of-the-art methods in terms of both classification accuracy and robustness. Using only a small number of channels, we obtain a classification performance similar to that of using all channels. Finally, the association between selected channels and activated brain areas is analyzed, which is important to reveal the working state of brain during MI." @default.
- W4312832593 created "2023-01-05" @default.
- W4312832593 creator A5036224617 @default.
- W4312832593 creator A5057898837 @default.
- W4312832593 creator A5065420877 @default.
- W4312832593 creator A5084878606 @default.
- W4312832593 creator A5088197463 @default.
- W4312832593 date "2023-09-01" @default.
- W4312832593 modified "2023-10-15" @default.
- W4312832593 title "Graph Convolution Neural Network Based End-to-End Channel Selection and Classification for Motor Imagery Brain–Computer Interfaces" @default.
- W4312832593 cites W1122726576 @default.
- W4312832593 cites W2005821483 @default.
- W4312832593 cites W2084204380 @default.
- W4312832593 cites W2100409538 @default.
- W4312832593 cites W2125675750 @default.
- W4312832593 cites W2128495200 @default.
- W4312832593 cites W2131321253 @default.
- W4312832593 cites W2149925546 @default.
- W4312832593 cites W2162800060 @default.
- W4312832593 cites W2419125014 @default.
- W4312832593 cites W2557301950 @default.
- W4312832593 cites W2562754841 @default.
- W4312832593 cites W2594083602 @default.
- W4312832593 cites W2756928350 @default.
- W4312832593 cites W2786396068 @default.
- W4312832593 cites W2790404832 @default.
- W4312832593 cites W2893789451 @default.
- W4312832593 cites W2904449562 @default.
- W4312832593 cites W2932399282 @default.
- W4312832593 cites W2949263306 @default.
- W4312832593 cites W2960585436 @default.
- W4312832593 cites W2965221775 @default.
- W4312832593 cites W3000231660 @default.
- W4312832593 cites W3002531416 @default.
- W4312832593 cites W3080395176 @default.
- W4312832593 cites W3102455230 @default.
- W4312832593 cites W3147639821 @default.
- W4312832593 cites W3155932944 @default.
- W4312832593 cites W4294643355 @default.
- W4312832593 cites W89197320 @default.
- W4312832593 doi "https://doi.org/10.1109/tii.2022.3227736" @default.
- W4312832593 hasPublicationYear "2023" @default.
- W4312832593 type Work @default.
- W4312832593 citedByCount "6" @default.
- W4312832593 countsByYear W43128325932023 @default.
- W4312832593 crossrefType "journal-article" @default.
- W4312832593 hasAuthorship W4312832593A5036224617 @default.
- W4312832593 hasAuthorship W4312832593A5057898837 @default.
- W4312832593 hasAuthorship W4312832593A5065420877 @default.
- W4312832593 hasAuthorship W4312832593A5084878606 @default.
- W4312832593 hasAuthorship W4312832593A5088197463 @default.
- W4312832593 hasBestOaLocation W43128325931 @default.
- W4312832593 hasConcept C104317684 @default.
- W4312832593 hasConcept C108583219 @default.
- W4312832593 hasConcept C118552586 @default.
- W4312832593 hasConcept C119857082 @default.
- W4312832593 hasConcept C127162648 @default.
- W4312832593 hasConcept C132525143 @default.
- W4312832593 hasConcept C153180895 @default.
- W4312832593 hasConcept C154945302 @default.
- W4312832593 hasConcept C15744967 @default.
- W4312832593 hasConcept C173201364 @default.
- W4312832593 hasConcept C185592680 @default.
- W4312832593 hasConcept C31258907 @default.
- W4312832593 hasConcept C41008148 @default.
- W4312832593 hasConcept C522805319 @default.
- W4312832593 hasConcept C54808283 @default.
- W4312832593 hasConcept C55493867 @default.
- W4312832593 hasConcept C63479239 @default.
- W4312832593 hasConcept C80444323 @default.
- W4312832593 hasConcept C81363708 @default.
- W4312832593 hasConceptScore W4312832593C104317684 @default.
- W4312832593 hasConceptScore W4312832593C108583219 @default.
- W4312832593 hasConceptScore W4312832593C118552586 @default.
- W4312832593 hasConceptScore W4312832593C119857082 @default.
- W4312832593 hasConceptScore W4312832593C127162648 @default.
- W4312832593 hasConceptScore W4312832593C132525143 @default.
- W4312832593 hasConceptScore W4312832593C153180895 @default.
- W4312832593 hasConceptScore W4312832593C154945302 @default.
- W4312832593 hasConceptScore W4312832593C15744967 @default.
- W4312832593 hasConceptScore W4312832593C173201364 @default.
- W4312832593 hasConceptScore W4312832593C185592680 @default.
- W4312832593 hasConceptScore W4312832593C31258907 @default.
- W4312832593 hasConceptScore W4312832593C41008148 @default.
- W4312832593 hasConceptScore W4312832593C522805319 @default.
- W4312832593 hasConceptScore W4312832593C54808283 @default.
- W4312832593 hasConceptScore W4312832593C55493867 @default.
- W4312832593 hasConceptScore W4312832593C63479239 @default.
- W4312832593 hasConceptScore W4312832593C80444323 @default.
- W4312832593 hasConceptScore W4312832593C81363708 @default.
- W4312832593 hasFunder F4320321001 @default.
- W4312832593 hasIssue "9" @default.
- W4312832593 hasLocation W43128325931 @default.
- W4312832593 hasOpenAccess W4312832593 @default.
- W4312832593 hasPrimaryLocation W43128325931 @default.
- W4312832593 hasRelatedWork W131149161 @default.
- W4312832593 hasRelatedWork W1530078976 @default.
- W4312832593 hasRelatedWork W1650914880 @default.