Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312839972> ?p ?o ?g. }
- W4312839972 abstract "Abstract We demonstrate the use of a probabilistic machine-learning technique to develop stochastic parameterizations of atmospheric column physics. After suitable preprocessing of NASA’s Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) data to minimize the effects of high-frequency, high-wavenumber component of MERRA2 estimate of vertical velocity, we use generative adversarial networks to learn the probability distribution of vertical profiles of diabatic sources conditioned on vertical profiles of temperature and humidity. This may be viewed as an improvement over previous similar but deterministic approaches that seek to alleviate both, shortcomings of human-designed physics parameterizations, and the computational demand of the “physics” step in climate models." @default.
- W4312839972 created "2023-01-05" @default.
- W4312839972 creator A5030262588 @default.
- W4312839972 creator A5041108063 @default.
- W4312839972 creator A5046342280 @default.
- W4312839972 date "2022-01-01" @default.
- W4312839972 modified "2023-10-18" @default.
- W4312839972 title "Stochastic parameterization of column physics using generative adversarial networks" @default.
- W4312839972 cites W1532887871 @default.
- W4312839972 cites W1987259268 @default.
- W4312839972 cites W1995483742 @default.
- W4312839972 cites W2003264078 @default.
- W4312839972 cites W2015370136 @default.
- W4312839972 cites W2015772410 @default.
- W4312839972 cites W2019457529 @default.
- W4312839972 cites W2051416171 @default.
- W4312839972 cites W2054012124 @default.
- W4312839972 cites W2070158856 @default.
- W4312839972 cites W2077038911 @default.
- W4312839972 cites W2097204356 @default.
- W4312839972 cites W2133018197 @default.
- W4312839972 cites W2134670261 @default.
- W4312839972 cites W2178646595 @default.
- W4312839972 cites W2505827166 @default.
- W4312839972 cites W2516417804 @default.
- W4312839972 cites W2808400960 @default.
- W4312839972 cites W2946102335 @default.
- W4312839972 cites W2947753393 @default.
- W4312839972 cites W2971306145 @default.
- W4312839972 cites W2974527409 @default.
- W4312839972 cites W3105945687 @default.
- W4312839972 cites W4200630602 @default.
- W4312839972 cites W4213367101 @default.
- W4312839972 cites W4296773048 @default.
- W4312839972 doi "https://doi.org/10.1017/eds.2022.32" @default.
- W4312839972 hasPublicationYear "2022" @default.
- W4312839972 type Work @default.
- W4312839972 citedByCount "0" @default.
- W4312839972 crossrefType "journal-article" @default.
- W4312839972 hasAuthorship W4312839972A5030262588 @default.
- W4312839972 hasAuthorship W4312839972A5041108063 @default.
- W4312839972 hasAuthorship W4312839972A5046342280 @default.
- W4312839972 hasBestOaLocation W43128399721 @default.
- W4312839972 hasConcept C105795698 @default.
- W4312839972 hasConcept C111368507 @default.
- W4312839972 hasConcept C119857082 @default.
- W4312839972 hasConcept C121332964 @default.
- W4312839972 hasConcept C121864883 @default.
- W4312839972 hasConcept C127313418 @default.
- W4312839972 hasConcept C132651083 @default.
- W4312839972 hasConcept C13355873 @default.
- W4312839972 hasConcept C149441793 @default.
- W4312839972 hasConcept C153294291 @default.
- W4312839972 hasConcept C154945302 @default.
- W4312839972 hasConcept C168167062 @default.
- W4312839972 hasConcept C168754636 @default.
- W4312839972 hasConcept C2524010 @default.
- W4312839972 hasConcept C2780551164 @default.
- W4312839972 hasConcept C32230216 @default.
- W4312839972 hasConcept C33923547 @default.
- W4312839972 hasConcept C34736171 @default.
- W4312839972 hasConcept C41008148 @default.
- W4312839972 hasConcept C49937458 @default.
- W4312839972 hasConcept C97355855 @default.
- W4312839972 hasConceptScore W4312839972C105795698 @default.
- W4312839972 hasConceptScore W4312839972C111368507 @default.
- W4312839972 hasConceptScore W4312839972C119857082 @default.
- W4312839972 hasConceptScore W4312839972C121332964 @default.
- W4312839972 hasConceptScore W4312839972C121864883 @default.
- W4312839972 hasConceptScore W4312839972C127313418 @default.
- W4312839972 hasConceptScore W4312839972C132651083 @default.
- W4312839972 hasConceptScore W4312839972C13355873 @default.
- W4312839972 hasConceptScore W4312839972C149441793 @default.
- W4312839972 hasConceptScore W4312839972C153294291 @default.
- W4312839972 hasConceptScore W4312839972C154945302 @default.
- W4312839972 hasConceptScore W4312839972C168167062 @default.
- W4312839972 hasConceptScore W4312839972C168754636 @default.
- W4312839972 hasConceptScore W4312839972C2524010 @default.
- W4312839972 hasConceptScore W4312839972C2780551164 @default.
- W4312839972 hasConceptScore W4312839972C32230216 @default.
- W4312839972 hasConceptScore W4312839972C33923547 @default.
- W4312839972 hasConceptScore W4312839972C34736171 @default.
- W4312839972 hasConceptScore W4312839972C41008148 @default.
- W4312839972 hasConceptScore W4312839972C49937458 @default.
- W4312839972 hasConceptScore W4312839972C97355855 @default.
- W4312839972 hasLocation W43128399721 @default.
- W4312839972 hasLocation W43128399722 @default.
- W4312839972 hasOpenAccess W4312839972 @default.
- W4312839972 hasPrimaryLocation W43128399721 @default.
- W4312839972 hasRelatedWork W1983233060 @default.
- W4312839972 hasRelatedWork W1991093342 @default.
- W4312839972 hasRelatedWork W2078622645 @default.
- W4312839972 hasRelatedWork W2085601491 @default.
- W4312839972 hasRelatedWork W2170798819 @default.
- W4312839972 hasRelatedWork W2347222412 @default.
- W4312839972 hasRelatedWork W2375996887 @default.
- W4312839972 hasRelatedWork W2397288865 @default.
- W4312839972 hasRelatedWork W4322723290 @default.
- W4312839972 hasRelatedWork W2181722423 @default.
- W4312839972 hasVolume "1" @default.