Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312842946> ?p ?o ?g. }
- W4312842946 endingPage "109" @default.
- W4312842946 startingPage "93" @default.
- W4312842946 abstract "We present UrbanScene3D, a large-scale data platform for research of urban scene perception and reconstruction. UrbanScene3D contains over 128k high-resolution images covering 16 scenes including large-scale real urban regions and synthetic cities with 136 km $$^2$$ area in total. The dataset also contains high-precision LiDAR scans and hundreds of image sets with different observation patterns, which provide a comprehensive benchmark to design and evaluate aerial path planning and 3D reconstruction algorithms. In addition, the dataset, which is built on Unreal Engine and Airsim simulator together with the manually annotated unique instance label for each building in the dataset, enables the generation of all kinds of data, e.g., 2D depth maps, 2D/3D bounding boxes, and 3D point cloud/mesh segmentations, etc. The simulator with physical engine and lighting system not only produce variety of data but also enable users to simulate cars or drones in the proposed urban environment for future research. The dataset with aerial path planning and 3D reconstruction benchmark is available at: https://vcc.tech/UrbanScene3D ." @default.
- W4312842946 created "2023-01-05" @default.
- W4312842946 creator A5014797090 @default.
- W4312842946 creator A5034304352 @default.
- W4312842946 creator A5036514560 @default.
- W4312842946 creator A5067516009 @default.
- W4312842946 creator A5085746619 @default.
- W4312842946 creator A5089815515 @default.
- W4312842946 date "2022-01-01" @default.
- W4312842946 modified "2023-10-13" @default.
- W4312842946 title "Capturing, Reconstructing, and Simulating: The UrbanScene3D Dataset" @default.
- W4312842946 cites W125693051 @default.
- W4312842946 cites W1975325338 @default.
- W4312842946 cites W2023497544 @default.
- W4312842946 cites W2150066425 @default.
- W4312842946 cites W2305645275 @default.
- W4312842946 cites W2340897893 @default.
- W4312842946 cites W2342277278 @default.
- W4312842946 cites W2431874326 @default.
- W4312842946 cites W2518876086 @default.
- W4312842946 cites W2563685048 @default.
- W4312842946 cites W2593841437 @default.
- W4312842946 cites W2594519801 @default.
- W4312842946 cites W2617643478 @default.
- W4312842946 cites W2738551266 @default.
- W4312842946 cites W2902410914 @default.
- W4312842946 cites W2905288042 @default.
- W4312842946 cites W2911055311 @default.
- W4312842946 cites W2953127211 @default.
- W4312842946 cites W2954649738 @default.
- W4312842946 cites W2956121407 @default.
- W4312842946 cites W2961368225 @default.
- W4312842946 cites W2962812366 @default.
- W4312842946 cites W2962849139 @default.
- W4312842946 cites W2962887844 @default.
- W4312842946 cites W2963054668 @default.
- W4312842946 cites W2963150697 @default.
- W4312842946 cites W2981393651 @default.
- W4312842946 cites W2991216808 @default.
- W4312842946 cites W2991416593 @default.
- W4312842946 cites W2995484963 @default.
- W4312842946 cites W3009634395 @default.
- W4312842946 cites W3028752951 @default.
- W4312842946 cites W3035163517 @default.
- W4312842946 cites W3035172746 @default.
- W4312842946 cites W3035257660 @default.
- W4312842946 cites W3035483468 @default.
- W4312842946 cites W3048510980 @default.
- W4312842946 cites W3093159043 @default.
- W4312842946 cites W3106783908 @default.
- W4312842946 cites W3109585842 @default.
- W4312842946 cites W3160589050 @default.
- W4312842946 cites W3174458495 @default.
- W4312842946 cites W4200394373 @default.
- W4312842946 cites W4200521614 @default.
- W4312842946 cites W4200634976 @default.
- W4312842946 doi "https://doi.org/10.1007/978-3-031-20074-8_6" @default.
- W4312842946 hasPublicationYear "2022" @default.
- W4312842946 type Work @default.
- W4312842946 citedByCount "8" @default.
- W4312842946 countsByYear W43128429462022 @default.
- W4312842946 countsByYear W43128429462023 @default.
- W4312842946 crossrefType "book-chapter" @default.
- W4312842946 hasAuthorship W4312842946A5014797090 @default.
- W4312842946 hasAuthorship W4312842946A5034304352 @default.
- W4312842946 hasAuthorship W4312842946A5036514560 @default.
- W4312842946 hasAuthorship W4312842946A5067516009 @default.
- W4312842946 hasAuthorship W4312842946A5085746619 @default.
- W4312842946 hasAuthorship W4312842946A5089815515 @default.
- W4312842946 hasBestOaLocation W43128429462 @default.
- W4312842946 hasConcept C115961682 @default.
- W4312842946 hasConcept C121684516 @default.
- W4312842946 hasConcept C124101348 @default.
- W4312842946 hasConcept C131979681 @default.
- W4312842946 hasConcept C147037132 @default.
- W4312842946 hasConcept C154945302 @default.
- W4312842946 hasConcept C185798385 @default.
- W4312842946 hasConcept C205649164 @default.
- W4312842946 hasConcept C2778755073 @default.
- W4312842946 hasConcept C31972630 @default.
- W4312842946 hasConcept C41008148 @default.
- W4312842946 hasConcept C51399673 @default.
- W4312842946 hasConcept C54355233 @default.
- W4312842946 hasConcept C58640448 @default.
- W4312842946 hasConcept C59519942 @default.
- W4312842946 hasConcept C62649853 @default.
- W4312842946 hasConcept C63584917 @default.
- W4312842946 hasConcept C86803240 @default.
- W4312842946 hasConceptScore W4312842946C115961682 @default.
- W4312842946 hasConceptScore W4312842946C121684516 @default.
- W4312842946 hasConceptScore W4312842946C124101348 @default.
- W4312842946 hasConceptScore W4312842946C131979681 @default.
- W4312842946 hasConceptScore W4312842946C147037132 @default.
- W4312842946 hasConceptScore W4312842946C154945302 @default.
- W4312842946 hasConceptScore W4312842946C185798385 @default.
- W4312842946 hasConceptScore W4312842946C205649164 @default.
- W4312842946 hasConceptScore W4312842946C2778755073 @default.
- W4312842946 hasConceptScore W4312842946C31972630 @default.