Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312843968> ?p ?o ?g. }
- W4312843968 abstract "We present a method for learning a generative 3D model based on neural radiance fields, trained solely from data with only single views of each object. While generating realistic images is no longer a difficult task, producing the corresponding 3D structure such that they can be rendered from different views is non-trivial. We show that, unlike existing methods, one does not need multi-view data to achieve this goal. Specifically, we show that by reconstructing many images aligned to an approximate canonical pose with a single network conditioned on a shared latent space, you can learn a space of radiance fields that models shape and appearance for a class of objects. We demonstrate this by training models to reconstruct object categories using datasets that contain only one view of each subject without depth or geometry information. Our experiments show that we achieve state-of-the-art results in novel view synthesis and high-quality results for monocular depth prediction. https://lolnerf.github.io." @default.
- W4312843968 created "2023-01-05" @default.
- W4312843968 creator A5037094498 @default.
- W4312843968 creator A5049893251 @default.
- W4312843968 creator A5051106306 @default.
- W4312843968 creator A5051847509 @default.
- W4312843968 creator A5083740230 @default.
- W4312843968 date "2022-06-01" @default.
- W4312843968 modified "2023-10-05" @default.
- W4312843968 title "LOLNeRF: Learn from One Look" @default.
- W4312843968 cites W1834627138 @default.
- W4312843968 cites W2107037917 @default.
- W4312843968 cites W2119400998 @default.
- W4312843968 cites W2237250383 @default.
- W4312843968 cites W2256578114 @default.
- W4312843968 cites W2399512112 @default.
- W4312843968 cites W2520300725 @default.
- W4312843968 cites W2542323081 @default.
- W4312843968 cites W2548882894 @default.
- W4312843968 cites W2903420996 @default.
- W4312843968 cites W2912990735 @default.
- W4312843968 cites W2962770929 @default.
- W4312843968 cites W2962849139 @default.
- W4312843968 cites W2963185411 @default.
- W4312843968 cites W2963409406 @default.
- W4312843968 cites W2963590054 @default.
- W4312843968 cites W2963627347 @default.
- W4312843968 cites W2963926543 @default.
- W4312843968 cites W2981657250 @default.
- W4312843968 cites W3021282624 @default.
- W4312843968 cites W3034192160 @default.
- W4312843968 cites W3034401976 @default.
- W4312843968 cites W3034600949 @default.
- W4312843968 cites W3034700465 @default.
- W4312843968 cites W3035163517 @default.
- W4312843968 cites W3035523051 @default.
- W4312843968 cites W3048884441 @default.
- W4312843968 cites W3160373107 @default.
- W4312843968 cites W3173531806 @default.
- W4312843968 cites W3175047242 @default.
- W4312843968 cites W3176179930 @default.
- W4312843968 cites W3177583232 @default.
- W4312843968 cites W3182714435 @default.
- W4312843968 cites W3202037070 @default.
- W4312843968 cites W3203570626 @default.
- W4312843968 cites W3203583526 @default.
- W4312843968 cites W4200150166 @default.
- W4312843968 cites W4200382072 @default.
- W4312843968 cites W4214502182 @default.
- W4312843968 cites W4214564845 @default.
- W4312843968 cites W4214628039 @default.
- W4312843968 cites W4214731463 @default.
- W4312843968 cites W4214748949 @default.
- W4312843968 cites W4226151879 @default.
- W4312843968 cites W4226494718 @default.
- W4312843968 cites W4237648096 @default.
- W4312843968 doi "https://doi.org/10.1109/cvpr52688.2022.00161" @default.
- W4312843968 hasPublicationYear "2022" @default.
- W4312843968 type Work @default.
- W4312843968 citedByCount "20" @default.
- W4312843968 countsByYear W43128439682022 @default.
- W4312843968 countsByYear W43128439682023 @default.
- W4312843968 crossrefType "proceedings-article" @default.
- W4312843968 hasAuthorship W4312843968A5037094498 @default.
- W4312843968 hasAuthorship W4312843968A5049893251 @default.
- W4312843968 hasAuthorship W4312843968A5051106306 @default.
- W4312843968 hasAuthorship W4312843968A5051847509 @default.
- W4312843968 hasAuthorship W4312843968A5083740230 @default.
- W4312843968 hasConcept C111919701 @default.
- W4312843968 hasConcept C127313418 @default.
- W4312843968 hasConcept C153180895 @default.
- W4312843968 hasConcept C154945302 @default.
- W4312843968 hasConcept C162324750 @default.
- W4312843968 hasConcept C167966045 @default.
- W4312843968 hasConcept C187736073 @default.
- W4312843968 hasConcept C205711294 @default.
- W4312843968 hasConcept C23690007 @default.
- W4312843968 hasConcept C2776449333 @default.
- W4312843968 hasConcept C2777212361 @default.
- W4312843968 hasConcept C2778572836 @default.
- W4312843968 hasConcept C2780451532 @default.
- W4312843968 hasConcept C2781238097 @default.
- W4312843968 hasConcept C31972630 @default.
- W4312843968 hasConcept C39890363 @default.
- W4312843968 hasConcept C41008148 @default.
- W4312843968 hasConcept C50644808 @default.
- W4312843968 hasConcept C62649853 @default.
- W4312843968 hasConcept C65909025 @default.
- W4312843968 hasConceptScore W4312843968C111919701 @default.
- W4312843968 hasConceptScore W4312843968C127313418 @default.
- W4312843968 hasConceptScore W4312843968C153180895 @default.
- W4312843968 hasConceptScore W4312843968C154945302 @default.
- W4312843968 hasConceptScore W4312843968C162324750 @default.
- W4312843968 hasConceptScore W4312843968C167966045 @default.
- W4312843968 hasConceptScore W4312843968C187736073 @default.
- W4312843968 hasConceptScore W4312843968C205711294 @default.
- W4312843968 hasConceptScore W4312843968C23690007 @default.
- W4312843968 hasConceptScore W4312843968C2776449333 @default.
- W4312843968 hasConceptScore W4312843968C2777212361 @default.
- W4312843968 hasConceptScore W4312843968C2778572836 @default.