Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312847531> ?p ?o ?g. }
- W4312847531 endingPage "126303" @default.
- W4312847531 startingPage "126285" @default.
- W4312847531 abstract "The use of artificial intelligence and machine learning is recognized as the key enabler for 5G mobile networks which would allow service providers to tackle the network complexity and ensure security, reliability and allocation of the necessary resources to their customers in a dynamic, robust and trustworthy way. Dependability of the future generation networks on accurate and timely performance of its artificial intelligence components means that disturbance in the functionality of these components may have negative impact on the entire network. As a result, there is an increasing concern about the vulnerability of intelligent machine learning driven frameworks to adversarial effects. In this study, we evaluate various adversarial example generation attacks against multiple artificial intelligence and machine learning models which can potentially be deployed in future 5G networks. First, we describe multiple use cases for which attacks on machine learning components are conceivable including the models employed and the data used for their training. After that, attack algorithms, their implementations and adjustments to the target models are summarised. Finally, the attacks implemented for the aforementioned use cases are evaluated based on deterioration of the objective functions optimised by the target models." @default.
- W4312847531 created "2023-01-05" @default.
- W4312847531 creator A5030611214 @default.
- W4312847531 creator A5036786418 @default.
- W4312847531 creator A5058345703 @default.
- W4312847531 creator A5085542438 @default.
- W4312847531 date "2022-01-01" @default.
- W4312847531 modified "2023-10-01" @default.
- W4312847531 title "On Assessing Vulnerabilities of the 5G Networks to Adversarial Examples" @default.
- W4312847531 cites W2064675550 @default.
- W4312847531 cites W2180612164 @default.
- W4312847531 cites W2243397390 @default.
- W4312847531 cites W2272847350 @default.
- W4312847531 cites W2332630870 @default.
- W4312847531 cites W2543927648 @default.
- W4312847531 cites W2603766943 @default.
- W4312847531 cites W2607219512 @default.
- W4312847531 cites W2616108305 @default.
- W4312847531 cites W2618043096 @default.
- W4312847531 cites W2734408173 @default.
- W4312847531 cites W2746600820 @default.
- W4312847531 cites W2774607536 @default.
- W4312847531 cites W2774644650 @default.
- W4312847531 cites W2788005034 @default.
- W4312847531 cites W2793130454 @default.
- W4312847531 cites W2892154397 @default.
- W4312847531 cites W2900804979 @default.
- W4312847531 cites W2902543210 @default.
- W4312847531 cites W2912078769 @default.
- W4312847531 cites W2917485473 @default.
- W4312847531 cites W2918062483 @default.
- W4312847531 cites W2948063298 @default.
- W4312847531 cites W2959169310 @default.
- W4312847531 cites W2962711307 @default.
- W4312847531 cites W2962992649 @default.
- W4312847531 cites W2963145597 @default.
- W4312847531 cites W2963190722 @default.
- W4312847531 cites W2963408914 @default.
- W4312847531 cites W2963612069 @default.
- W4312847531 cites W2963728120 @default.
- W4312847531 cites W2963836746 @default.
- W4312847531 cites W2963857521 @default.
- W4312847531 cites W2964199361 @default.
- W4312847531 cites W2976987664 @default.
- W4312847531 cites W2985696718 @default.
- W4312847531 cites W2997936696 @default.
- W4312847531 cites W3013594094 @default.
- W4312847531 cites W3015625436 @default.
- W4312847531 cites W3022151098 @default.
- W4312847531 cites W3023683268 @default.
- W4312847531 cites W3036327743 @default.
- W4312847531 cites W3043472726 @default.
- W4312847531 cites W3091704528 @default.
- W4312847531 cites W3107235539 @default.
- W4312847531 cites W3115799183 @default.
- W4312847531 cites W3120562908 @default.
- W4312847531 cites W3133729763 @default.
- W4312847531 cites W3173424115 @default.
- W4312847531 cites W3174137752 @default.
- W4312847531 cites W3177585635 @default.
- W4312847531 cites W3179181747 @default.
- W4312847531 cites W3190041646 @default.
- W4312847531 cites W3193190996 @default.
- W4312847531 cites W3193643066 @default.
- W4312847531 cites W3197012778 @default.
- W4312847531 cites W3199812977 @default.
- W4312847531 cites W3200528697 @default.
- W4312847531 cites W3213282580 @default.
- W4312847531 cites W32403112 @default.
- W4312847531 doi "https://doi.org/10.1109/access.2022.3225921" @default.
- W4312847531 hasPublicationYear "2022" @default.
- W4312847531 type Work @default.
- W4312847531 citedByCount "1" @default.
- W4312847531 countsByYear W43128475312023 @default.
- W4312847531 crossrefType "journal-article" @default.
- W4312847531 hasAuthorship W4312847531A5030611214 @default.
- W4312847531 hasAuthorship W4312847531A5036786418 @default.
- W4312847531 hasAuthorship W4312847531A5058345703 @default.
- W4312847531 hasAuthorship W4312847531A5085542438 @default.
- W4312847531 hasBestOaLocation W43128475311 @default.
- W4312847531 hasConcept C115903868 @default.
- W4312847531 hasConcept C119857082 @default.
- W4312847531 hasConcept C121332964 @default.
- W4312847531 hasConcept C154945302 @default.
- W4312847531 hasConcept C15744967 @default.
- W4312847531 hasConcept C163258240 @default.
- W4312847531 hasConcept C22607594 @default.
- W4312847531 hasConcept C26517878 @default.
- W4312847531 hasConcept C26713055 @default.
- W4312847531 hasConcept C2778403875 @default.
- W4312847531 hasConcept C37736160 @default.
- W4312847531 hasConcept C38652104 @default.
- W4312847531 hasConcept C41008148 @default.
- W4312847531 hasConcept C43214815 @default.
- W4312847531 hasConcept C542102704 @default.
- W4312847531 hasConcept C62520636 @default.
- W4312847531 hasConcept C77019957 @default.
- W4312847531 hasConcept C95713431 @default.