Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312852945> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4312852945 abstract "Traffic flow prediction is a challenging task due to complex spatial-temporal correlations. Most existing methods leverage graph convolutional network (GCN) to capture spatial correlations. However, GCN has limited ability in mining global spatial correlations. Multi-layer GCN for aggregating multi-order neighbor information will result in high-degree nodes being prone to over-smoothing. To this end, we develop a graph convolutional recurrent attention network (GCRAN) for traffic flow prediction. Specifically, we take the advantage of Gated Recurrent Units (GRU) and Attention to explore local and global temporal correlations. Moreover, we design a novel local context aware spatial attention to extract local and global spatial correlations simultaneously. Experiments on two public real-world traffic datasets demonstrate that GCRAN outperform state-of-the-art baselines." @default.
- W4312852945 created "2023-01-05" @default.
- W4312852945 creator A5004812601 @default.
- W4312852945 creator A5038832637 @default.
- W4312852945 creator A5065037360 @default.
- W4312852945 creator A5065647746 @default.
- W4312852945 creator A5077156405 @default.
- W4312852945 date "2022-07-18" @default.
- W4312852945 modified "2023-10-16" @default.
- W4312852945 title "Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction" @default.
- W4312852945 cites W1970269368 @default.
- W4312852945 cites W1973943669 @default.
- W4312852945 cites W1982978808 @default.
- W4312852945 cites W1990816055 @default.
- W4312852945 cites W2004353783 @default.
- W4312852945 cites W2027287130 @default.
- W4312852945 cites W2145039203 @default.
- W4312852945 cites W2154531209 @default.
- W4312852945 cites W2156206597 @default.
- W4312852945 cites W2528639018 @default.
- W4312852945 cites W2530386080 @default.
- W4312852945 cites W2572939427 @default.
- W4312852945 cites W2592311268 @default.
- W4312852945 cites W2624190409 @default.
- W4312852945 cites W2788134583 @default.
- W4312852945 cites W2901504064 @default.
- W4312852945 cites W2950817888 @default.
- W4312852945 cites W2962790412 @default.
- W4312852945 cites W2965341826 @default.
- W4312852945 cites W2997848713 @default.
- W4312852945 cites W2998559444 @default.
- W4312852945 cites W2999301586 @default.
- W4312852945 cites W3034749137 @default.
- W4312852945 cites W3039941973 @default.
- W4312852945 cites W3045642713 @default.
- W4312852945 cites W3080253043 @default.
- W4312852945 cites W3093761440 @default.
- W4312852945 cites W3094588037 @default.
- W4312852945 cites W3103720336 @default.
- W4312852945 cites W3103796199 @default.
- W4312852945 cites W3126367810 @default.
- W4312852945 cites W3153673236 @default.
- W4312852945 cites W3176075655 @default.
- W4312852945 cites W3198941940 @default.
- W4312852945 cites W3206604724 @default.
- W4312852945 cites W63326460 @default.
- W4312852945 doi "https://doi.org/10.1109/ijcnn55064.2022.9892616" @default.
- W4312852945 hasPublicationYear "2022" @default.
- W4312852945 type Work @default.
- W4312852945 citedByCount "3" @default.
- W4312852945 countsByYear W43128529452023 @default.
- W4312852945 crossrefType "proceedings-article" @default.
- W4312852945 hasAuthorship W4312852945A5004812601 @default.
- W4312852945 hasAuthorship W4312852945A5038832637 @default.
- W4312852945 hasAuthorship W4312852945A5065037360 @default.
- W4312852945 hasAuthorship W4312852945A5065647746 @default.
- W4312852945 hasAuthorship W4312852945A5077156405 @default.
- W4312852945 hasConcept C105795698 @default.
- W4312852945 hasConcept C124101348 @default.
- W4312852945 hasConcept C132525143 @default.
- W4312852945 hasConcept C150060386 @default.
- W4312852945 hasConcept C159620131 @default.
- W4312852945 hasConcept C33923547 @default.
- W4312852945 hasConcept C41008148 @default.
- W4312852945 hasConcept C67186912 @default.
- W4312852945 hasConcept C76155785 @default.
- W4312852945 hasConcept C77088390 @default.
- W4312852945 hasConcept C77277458 @default.
- W4312852945 hasConcept C80444323 @default.
- W4312852945 hasConceptScore W4312852945C105795698 @default.
- W4312852945 hasConceptScore W4312852945C124101348 @default.
- W4312852945 hasConceptScore W4312852945C132525143 @default.
- W4312852945 hasConceptScore W4312852945C150060386 @default.
- W4312852945 hasConceptScore W4312852945C159620131 @default.
- W4312852945 hasConceptScore W4312852945C33923547 @default.
- W4312852945 hasConceptScore W4312852945C41008148 @default.
- W4312852945 hasConceptScore W4312852945C67186912 @default.
- W4312852945 hasConceptScore W4312852945C76155785 @default.
- W4312852945 hasConceptScore W4312852945C77088390 @default.
- W4312852945 hasConceptScore W4312852945C77277458 @default.
- W4312852945 hasConceptScore W4312852945C80444323 @default.
- W4312852945 hasFunder F4320321001 @default.
- W4312852945 hasFunder F4320335777 @default.
- W4312852945 hasLocation W43128529451 @default.
- W4312852945 hasOpenAccess W4312852945 @default.
- W4312852945 hasPrimaryLocation W43128529451 @default.
- W4312852945 hasRelatedWork W1974982526 @default.
- W4312852945 hasRelatedWork W1992538866 @default.
- W4312852945 hasRelatedWork W2021556813 @default.
- W4312852945 hasRelatedWork W2065827785 @default.
- W4312852945 hasRelatedWork W207353543 @default.
- W4312852945 hasRelatedWork W2091713298 @default.
- W4312852945 hasRelatedWork W2105773697 @default.
- W4312852945 hasRelatedWork W2361951392 @default.
- W4312852945 hasRelatedWork W299103998 @default.
- W4312852945 hasRelatedWork W589251803 @default.
- W4312852945 isParatext "false" @default.
- W4312852945 isRetracted "false" @default.
- W4312852945 workType "article" @default.