Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312854533> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4312854533 endingPage "226" @default.
- W4312854533 startingPage "212" @default.
- W4312854533 abstract "Machine learning-based solutions for link prediction in Online Social Networks (OSNs) have been the subject of many research efforts. While most of them are mainly focused on the global and local properties of the graph structure surrounding links, a few take also into account additional contextual information, such as the textual content produced by OSN accounts. In this paper we cope with the latter solutions to i) evaluate the role of textual data in enhancing performances in the link prediction task on OSN; and ii) identify strengths and weaknesses of different machine learning approaches when dealing with properties extracted from text. We conducted the evaluation of several tools, from well-established methods such as logistic regression or ensemble methods to more recent deep learning architectures for graph representation learning, on a novel dataset gathered from an emerging blockchain online social network. This dataset represents a valuable playground for link prediction evaluation since it offers high-resolution temporal data on link creation and textual data for each account. Our findings show that the combination of structural and textual features enhances the prediction performance of traditional models. Deep learning architectures outperform the traditional ones and they can also benefit from the addition of textual features. However, some textual attributes can also reduce the prediction power of some deep architectures. In general, deep learning models are promising solutions even for the link prediction task with textual content but may suffer the introduction of structured properties inferred from the text." @default.
- W4312854533 created "2023-01-05" @default.
- W4312854533 creator A5002723662 @default.
- W4312854533 creator A5018462865 @default.
- W4312854533 creator A5035471624 @default.
- W4312854533 creator A5055881236 @default.
- W4312854533 date "2022-01-01" @default.
- W4312854533 modified "2023-09-27" @default.
- W4312854533 title "Link Prediction with Text in Online Social Networks: The Role of Textual Content on High-Resolution Temporal Data" @default.
- W4312854533 cites W2091019377 @default.
- W4312854533 cites W2166738139 @default.
- W4312854533 cites W2550301518 @default.
- W4312854533 cites W2802562854 @default.
- W4312854533 cites W3004621088 @default.
- W4312854533 cites W3116529252 @default.
- W4312854533 cites W3146366485 @default.
- W4312854533 cites W3210770053 @default.
- W4312854533 cites W4210257598 @default.
- W4312854533 cites W4281483541 @default.
- W4312854533 cites W4282970868 @default.
- W4312854533 doi "https://doi.org/10.1007/978-3-031-18840-4_16" @default.
- W4312854533 hasPublicationYear "2022" @default.
- W4312854533 type Work @default.
- W4312854533 citedByCount "0" @default.
- W4312854533 crossrefType "book-chapter" @default.
- W4312854533 hasAuthorship W4312854533A5002723662 @default.
- W4312854533 hasAuthorship W4312854533A5018462865 @default.
- W4312854533 hasAuthorship W4312854533A5035471624 @default.
- W4312854533 hasAuthorship W4312854533A5055881236 @default.
- W4312854533 hasConcept C108583219 @default.
- W4312854533 hasConcept C119857082 @default.
- W4312854533 hasConcept C132525143 @default.
- W4312854533 hasConcept C154945302 @default.
- W4312854533 hasConcept C162324750 @default.
- W4312854533 hasConcept C17744445 @default.
- W4312854533 hasConcept C187736073 @default.
- W4312854533 hasConcept C199539241 @default.
- W4312854533 hasConcept C204321447 @default.
- W4312854533 hasConcept C23123220 @default.
- W4312854533 hasConcept C2776359362 @default.
- W4312854533 hasConcept C2780451532 @default.
- W4312854533 hasConcept C41008148 @default.
- W4312854533 hasConcept C45942800 @default.
- W4312854533 hasConcept C80444323 @default.
- W4312854533 hasConcept C94625758 @default.
- W4312854533 hasConceptScore W4312854533C108583219 @default.
- W4312854533 hasConceptScore W4312854533C119857082 @default.
- W4312854533 hasConceptScore W4312854533C132525143 @default.
- W4312854533 hasConceptScore W4312854533C154945302 @default.
- W4312854533 hasConceptScore W4312854533C162324750 @default.
- W4312854533 hasConceptScore W4312854533C17744445 @default.
- W4312854533 hasConceptScore W4312854533C187736073 @default.
- W4312854533 hasConceptScore W4312854533C199539241 @default.
- W4312854533 hasConceptScore W4312854533C204321447 @default.
- W4312854533 hasConceptScore W4312854533C23123220 @default.
- W4312854533 hasConceptScore W4312854533C2776359362 @default.
- W4312854533 hasConceptScore W4312854533C2780451532 @default.
- W4312854533 hasConceptScore W4312854533C41008148 @default.
- W4312854533 hasConceptScore W4312854533C45942800 @default.
- W4312854533 hasConceptScore W4312854533C80444323 @default.
- W4312854533 hasConceptScore W4312854533C94625758 @default.
- W4312854533 hasLocation W43128545331 @default.
- W4312854533 hasOpenAccess W4312854533 @default.
- W4312854533 hasPrimaryLocation W43128545331 @default.
- W4312854533 hasRelatedWork W2810053714 @default.
- W4312854533 hasRelatedWork W2950066684 @default.
- W4312854533 hasRelatedWork W3136979370 @default.
- W4312854533 hasRelatedWork W3158264953 @default.
- W4312854533 hasRelatedWork W3162132941 @default.
- W4312854533 hasRelatedWork W3200098538 @default.
- W4312854533 hasRelatedWork W4220785415 @default.
- W4312854533 hasRelatedWork W4298388782 @default.
- W4312854533 hasRelatedWork W4308112567 @default.
- W4312854533 hasRelatedWork W4310989423 @default.
- W4312854533 isParatext "false" @default.
- W4312854533 isRetracted "false" @default.
- W4312854533 workType "book-chapter" @default.