Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312864369> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4312864369 abstract "Bayesian Network (BN) is a model that applies Bayes principle with assumption that input variables can be interdependent. BN is described as a graph consisting of nodes and arcs. Node shows variables while arc shows relationship between nodes. Combined probability distribution between nodes in BN is built using gaussian mixture models (GMM) which is a type of density model consisting of components of Gaussian functions. There are 3 of mixture models, probability mixture model, parametric mixture model and continuous mixture. GMM parameters can be estimated using expectation maximization (EM) algorithm. EM algorithm is an iterative method that involves expectation (E-step) and maximization (M-step) and is often used to find estimated value of Maximum Likelihood (ML) of parameters in a probabilistic model, where the model also depends on unknown latent variables. E-step is calculating the expectation value of the log-likelihood function, while M-step maximizes the expected value of the log-likelihood function. Advantage of EM algorithm is that it can solve mixed function parameter estimation problems as well as parameters from incomplete data. EM algorithm can solve the log-likelihood function problem which is difficult to solve by simple analysis by assuming the existence of a value for an additional but hidden parameter." @default.
- W4312864369 created "2023-01-05" @default.
- W4312864369 creator A5000847023 @default.
- W4312864369 creator A5060181967 @default.
- W4312864369 date "2022-01-01" @default.
- W4312864369 modified "2023-10-15" @default.
- W4312864369 title "Parameter estimation of Gaussian mixture models (GMM) with expectation maximization (EM) algorithm" @default.
- W4312864369 cites W1535430927 @default.
- W4312864369 cites W1984120871 @default.
- W4312864369 cites W1985690171 @default.
- W4312864369 cites W2019676146 @default.
- W4312864369 cites W2060725352 @default.
- W4312864369 cites W2102397291 @default.
- W4312864369 cites W2412330070 @default.
- W4312864369 cites W2488678869 @default.
- W4312864369 cites W2904940216 @default.
- W4312864369 cites W4246466113 @default.
- W4312864369 cites W4292080463 @default.
- W4312864369 doi "https://doi.org/10.1063/5.0117119" @default.
- W4312864369 hasPublicationYear "2022" @default.
- W4312864369 type Work @default.
- W4312864369 citedByCount "0" @default.
- W4312864369 crossrefType "proceedings-article" @default.
- W4312864369 hasAuthorship W4312864369A5000847023 @default.
- W4312864369 hasAuthorship W4312864369A5060181967 @default.
- W4312864369 hasBestOaLocation W43128643691 @default.
- W4312864369 hasConcept C105795698 @default.
- W4312864369 hasConcept C107673813 @default.
- W4312864369 hasConcept C11413529 @default.
- W4312864369 hasConcept C121332964 @default.
- W4312864369 hasConcept C126255220 @default.
- W4312864369 hasConcept C154945302 @default.
- W4312864369 hasConcept C163716315 @default.
- W4312864369 hasConcept C167928553 @default.
- W4312864369 hasConcept C182081679 @default.
- W4312864369 hasConcept C197055811 @default.
- W4312864369 hasConcept C28826006 @default.
- W4312864369 hasConcept C33923547 @default.
- W4312864369 hasConcept C41008148 @default.
- W4312864369 hasConcept C49781872 @default.
- W4312864369 hasConcept C51167844 @default.
- W4312864369 hasConcept C56672385 @default.
- W4312864369 hasConcept C61224824 @default.
- W4312864369 hasConcept C62520636 @default.
- W4312864369 hasConcept C89106044 @default.
- W4312864369 hasConcept C95923904 @default.
- W4312864369 hasConceptScore W4312864369C105795698 @default.
- W4312864369 hasConceptScore W4312864369C107673813 @default.
- W4312864369 hasConceptScore W4312864369C11413529 @default.
- W4312864369 hasConceptScore W4312864369C121332964 @default.
- W4312864369 hasConceptScore W4312864369C126255220 @default.
- W4312864369 hasConceptScore W4312864369C154945302 @default.
- W4312864369 hasConceptScore W4312864369C163716315 @default.
- W4312864369 hasConceptScore W4312864369C167928553 @default.
- W4312864369 hasConceptScore W4312864369C182081679 @default.
- W4312864369 hasConceptScore W4312864369C197055811 @default.
- W4312864369 hasConceptScore W4312864369C28826006 @default.
- W4312864369 hasConceptScore W4312864369C33923547 @default.
- W4312864369 hasConceptScore W4312864369C41008148 @default.
- W4312864369 hasConceptScore W4312864369C49781872 @default.
- W4312864369 hasConceptScore W4312864369C51167844 @default.
- W4312864369 hasConceptScore W4312864369C56672385 @default.
- W4312864369 hasConceptScore W4312864369C61224824 @default.
- W4312864369 hasConceptScore W4312864369C62520636 @default.
- W4312864369 hasConceptScore W4312864369C89106044 @default.
- W4312864369 hasConceptScore W4312864369C95923904 @default.
- W4312864369 hasLocation W43128643691 @default.
- W4312864369 hasOpenAccess W4312864369 @default.
- W4312864369 hasPrimaryLocation W43128643691 @default.
- W4312864369 hasRelatedWork W1502617237 @default.
- W4312864369 hasRelatedWork W2142411859 @default.
- W4312864369 hasRelatedWork W2152397420 @default.
- W4312864369 hasRelatedWork W2348157373 @default.
- W4312864369 hasRelatedWork W2390534900 @default.
- W4312864369 hasRelatedWork W3000731331 @default.
- W4312864369 hasRelatedWork W3176361882 @default.
- W4312864369 hasRelatedWork W4287905632 @default.
- W4312864369 hasRelatedWork W4312864369 @default.
- W4312864369 hasRelatedWork W3021672241 @default.
- W4312864369 isParatext "false" @default.
- W4312864369 isRetracted "false" @default.
- W4312864369 workType "article" @default.