Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312879295> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4312879295 endingPage "14" @default.
- W4312879295 startingPage "1" @default.
- W4312879295 abstract "Data deduplication has been broadly used in Cloud due to its storage space saving ability. An issue of deduplication is the contiguous data chunks in a segment may be scattered in different containers. This phenomenon is called data fragmentation. Because of data fragmentation, a restore process must reference various containers across a wide variety of segments, thereby hurting the restore performance. Capping methods that rewrite the data chunks of low Container Reference Ratio ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CRR</i> ) containers are developed to alleviate data fragmentation. We analyze and observe from real traces that a number of segments only point to low <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CRR</i> containers, while some others only contain high <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CRR</i> containers. This interesting observation is ignored by the existing capping methods which sort containers from a single segment, falling short in searching multiple segments collectively. Thus, the reference count of selected containers in the existing capping methods is still high. To address this problem, we propose a multi-segment greedy rewriting method named MGRM. MGRM sorts containers of segments in a sequential way. More specifically, given the <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i-th</i> segment currently being processed, MGRM will sort all the containers in the top <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i-th</i> segments. This salient searching feature enables MGRM to select and rewrite the true low-reference container set. Moreover, to achieve a good balance between deduplication ratio and restore performance, MGRM has two working modes: an optimal rewriting mode and a radical rewriting mode. When working in the optimal rewriting mode, MGRM aims to improve the deduplication ratio; when the radical rewriting mode, MGRM strives to improve the restore performance. MGRM adaptively switches the working mode according to workload. Furthermore, unlike the existing capping methods that improve restore performance at the cost of the deduplication ratio, MGRM pays attention to both aspects. Our extensive experimental results show that MGRM achieves high restore performance, coupled with a high deduplication ratio. In particular, compared with the two state-of-art schemes FC and FLC, MGRM improves the deduplication ratio and restore performance by up to 114.83% and 99.34%, respectively." @default.
- W4312879295 created "2023-01-05" @default.
- W4312879295 creator A5024366567 @default.
- W4312879295 creator A5030996059 @default.
- W4312879295 creator A5068252474 @default.
- W4312879295 creator A5073135288 @default.
- W4312879295 creator A5083702949 @default.
- W4312879295 creator A5086314430 @default.
- W4312879295 date "2022-01-01" @default.
- W4312879295 modified "2023-09-27" @default.
- W4312879295 title "MGRM: A Multi-Segment Greedy Rewriting Method to Alleviate Data Fragmentation in Deduplication-Based Cloud Backup Systems" @default.
- W4312879295 cites W2010150514 @default.
- W4312879295 cites W2027016098 @default.
- W4312879295 cites W2033062224 @default.
- W4312879295 cites W2172174733 @default.
- W4312879295 cites W2345185127 @default.
- W4312879295 cites W2606291150 @default.
- W4312879295 cites W2792376237 @default.
- W4312879295 cites W2800515890 @default.
- W4312879295 cites W2810972659 @default.
- W4312879295 cites W2884779095 @default.
- W4312879295 cites W2911310687 @default.
- W4312879295 cites W2912893741 @default.
- W4312879295 cites W2986445348 @default.
- W4312879295 cites W2998583855 @default.
- W4312879295 cites W3004612141 @default.
- W4312879295 cites W3014193728 @default.
- W4312879295 cites W3046779769 @default.
- W4312879295 cites W3127818531 @default.
- W4312879295 cites W3130391092 @default.
- W4312879295 cites W3158219979 @default.
- W4312879295 cites W3207131661 @default.
- W4312879295 doi "https://doi.org/10.1109/tcc.2022.3214816" @default.
- W4312879295 hasPublicationYear "2022" @default.
- W4312879295 type Work @default.
- W4312879295 citedByCount "0" @default.
- W4312879295 crossrefType "journal-article" @default.
- W4312879295 hasAuthorship W4312879295A5024366567 @default.
- W4312879295 hasAuthorship W4312879295A5030996059 @default.
- W4312879295 hasAuthorship W4312879295A5068252474 @default.
- W4312879295 hasAuthorship W4312879295A5073135288 @default.
- W4312879295 hasAuthorship W4312879295A5083702949 @default.
- W4312879295 hasAuthorship W4312879295A5086314430 @default.
- W4312879295 hasConcept C111919701 @default.
- W4312879295 hasConcept C124101348 @default.
- W4312879295 hasConcept C154690210 @default.
- W4312879295 hasConcept C191015642 @default.
- W4312879295 hasConcept C199360897 @default.
- W4312879295 hasConcept C23123220 @default.
- W4312879295 hasConcept C2780945871 @default.
- W4312879295 hasConcept C32587265 @default.
- W4312879295 hasConcept C41008148 @default.
- W4312879295 hasConcept C77088390 @default.
- W4312879295 hasConcept C79974875 @default.
- W4312879295 hasConcept C80444323 @default.
- W4312879295 hasConcept C88548561 @default.
- W4312879295 hasConceptScore W4312879295C111919701 @default.
- W4312879295 hasConceptScore W4312879295C124101348 @default.
- W4312879295 hasConceptScore W4312879295C154690210 @default.
- W4312879295 hasConceptScore W4312879295C191015642 @default.
- W4312879295 hasConceptScore W4312879295C199360897 @default.
- W4312879295 hasConceptScore W4312879295C23123220 @default.
- W4312879295 hasConceptScore W4312879295C2780945871 @default.
- W4312879295 hasConceptScore W4312879295C32587265 @default.
- W4312879295 hasConceptScore W4312879295C41008148 @default.
- W4312879295 hasConceptScore W4312879295C77088390 @default.
- W4312879295 hasConceptScore W4312879295C79974875 @default.
- W4312879295 hasConceptScore W4312879295C80444323 @default.
- W4312879295 hasConceptScore W4312879295C88548561 @default.
- W4312879295 hasLocation W43128792951 @default.
- W4312879295 hasOpenAccess W4312879295 @default.
- W4312879295 hasPrimaryLocation W43128792951 @default.
- W4312879295 hasRelatedWork W1437397736 @default.
- W4312879295 hasRelatedWork W1501986906 @default.
- W4312879295 hasRelatedWork W1533470797 @default.
- W4312879295 hasRelatedWork W2033062224 @default.
- W4312879295 hasRelatedWork W2041741449 @default.
- W4312879295 hasRelatedWork W2347219288 @default.
- W4312879295 hasRelatedWork W2572485985 @default.
- W4312879295 hasRelatedWork W2909888707 @default.
- W4312879295 hasRelatedWork W4285245558 @default.
- W4312879295 hasRelatedWork W4285326791 @default.
- W4312879295 isParatext "false" @default.
- W4312879295 isRetracted "false" @default.
- W4312879295 workType "article" @default.