Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312879655> ?p ?o ?g. }
- W4312879655 endingPage "101811" @default.
- W4312879655 startingPage "101811" @default.
- W4312879655 abstract "In the era of technology-driven economies, patent infringement has become one of the main risks faced by companies, which exists in all stages of technological innovation. However, the increasing size of patent information as well as the inherent fuzziness of patent infringement risk make the early warning of this risk a knowledge-intensive engineering activity. In this study, a novel patent infringement early warning methodology based on intuitionistic fuzzy sets (IFSs) is proposed to accurately evaluate and classify patent infringement risk for its management. First, a hierarchical indicator system of the methodology is established, including indicators of regional judicial and administrative protection. Then entropy weights for IFSs and intuitionistic fuzzy weighted geometric (IFWG) operators are utilized to objectively and automatically aggregate indicator data on early warning patents and their similar patents to evaluate IFS results, which is a multi-layer data processing structure. Finally, the normalized Euclidean distances are used to classify risk levels. In a case study, Huawei's historical patents are taken as the test data, and the methodology is verified by comparing the output results and classification with the actual litigation status. Managerial implications for design engineers and patent attorneys are discussed corresponding to various technological innovation stages." @default.
- W4312879655 created "2023-01-05" @default.
- W4312879655 creator A5002831074 @default.
- W4312879655 creator A5007711993 @default.
- W4312879655 creator A5049280385 @default.
- W4312879655 creator A5085680052 @default.
- W4312879655 date "2022-10-01" @default.
- W4312879655 modified "2023-10-16" @default.
- W4312879655 title "A patent infringement early-warning methodology based on intuitionistic fuzzy sets: A case study of Huawei" @default.
- W4312879655 cites W1965350231 @default.
- W4312879655 cites W1966383060 @default.
- W4312879655 cites W1972494505 @default.
- W4312879655 cites W1980564456 @default.
- W4312879655 cites W1981107087 @default.
- W4312879655 cites W1982122985 @default.
- W4312879655 cites W1982186876 @default.
- W4312879655 cites W1987177581 @default.
- W4312879655 cites W1990948347 @default.
- W4312879655 cites W1993612095 @default.
- W4312879655 cites W2021262847 @default.
- W4312879655 cites W2026244788 @default.
- W4312879655 cites W2033562332 @default.
- W4312879655 cites W2040217222 @default.
- W4312879655 cites W2053978414 @default.
- W4312879655 cites W2056297890 @default.
- W4312879655 cites W2056909456 @default.
- W4312879655 cites W2069725931 @default.
- W4312879655 cites W2079767857 @default.
- W4312879655 cites W2080968038 @default.
- W4312879655 cites W2082270871 @default.
- W4312879655 cites W2089419283 @default.
- W4312879655 cites W2118793924 @default.
- W4312879655 cites W2123662374 @default.
- W4312879655 cites W2125156668 @default.
- W4312879655 cites W2136374447 @default.
- W4312879655 cites W2144836956 @default.
- W4312879655 cites W2161689582 @default.
- W4312879655 cites W2563384619 @default.
- W4312879655 cites W2587090046 @default.
- W4312879655 cites W2655124276 @default.
- W4312879655 cites W2725736997 @default.
- W4312879655 cites W2737579463 @default.
- W4312879655 cites W2748548545 @default.
- W4312879655 cites W2751666551 @default.
- W4312879655 cites W2891991855 @default.
- W4312879655 cites W2906224627 @default.
- W4312879655 cites W2955266857 @default.
- W4312879655 cites W2970509806 @default.
- W4312879655 cites W2981595433 @default.
- W4312879655 cites W2996097588 @default.
- W4312879655 cites W299735007 @default.
- W4312879655 cites W3046437413 @default.
- W4312879655 cites W3050653744 @default.
- W4312879655 cites W3118222090 @default.
- W4312879655 cites W3121513665 @default.
- W4312879655 cites W3122441668 @default.
- W4312879655 cites W3122717629 @default.
- W4312879655 cites W3122837480 @default.
- W4312879655 cites W3155202550 @default.
- W4312879655 cites W3196282926 @default.
- W4312879655 cites W4211007335 @default.
- W4312879655 cites W4212963974 @default.
- W4312879655 doi "https://doi.org/10.1016/j.aei.2022.101811" @default.
- W4312879655 hasPublicationYear "2022" @default.
- W4312879655 type Work @default.
- W4312879655 citedByCount "2" @default.
- W4312879655 countsByYear W43128796552023 @default.
- W4312879655 crossrefType "journal-article" @default.
- W4312879655 hasAuthorship W4312879655A5002831074 @default.
- W4312879655 hasAuthorship W4312879655A5007711993 @default.
- W4312879655 hasAuthorship W4312879655A5049280385 @default.
- W4312879655 hasAuthorship W4312879655A5085680052 @default.
- W4312879655 hasConcept C106301342 @default.
- W4312879655 hasConcept C111919701 @default.
- W4312879655 hasConcept C112930515 @default.
- W4312879655 hasConcept C120174047 @default.
- W4312879655 hasConcept C121332964 @default.
- W4312879655 hasConcept C124101348 @default.
- W4312879655 hasConcept C127413603 @default.
- W4312879655 hasConcept C144133560 @default.
- W4312879655 hasConcept C154945302 @default.
- W4312879655 hasConcept C159985019 @default.
- W4312879655 hasConcept C192562407 @default.
- W4312879655 hasConcept C2777029862 @default.
- W4312879655 hasConcept C29825287 @default.
- W4312879655 hasConcept C34974158 @default.
- W4312879655 hasConcept C41008148 @default.
- W4312879655 hasConcept C42475967 @default.
- W4312879655 hasConcept C4679612 @default.
- W4312879655 hasConcept C58166 @default.
- W4312879655 hasConcept C62520636 @default.
- W4312879655 hasConcept C76155785 @default.
- W4312879655 hasConceptScore W4312879655C106301342 @default.
- W4312879655 hasConceptScore W4312879655C111919701 @default.
- W4312879655 hasConceptScore W4312879655C112930515 @default.
- W4312879655 hasConceptScore W4312879655C120174047 @default.
- W4312879655 hasConceptScore W4312879655C121332964 @default.
- W4312879655 hasConceptScore W4312879655C124101348 @default.