Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312894114> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4312894114 endingPage "1106" @default.
- W4312894114 startingPage "1096" @default.
- W4312894114 abstract "The optimal deployment of sensor nodes can effectively improve the monitoring performance of the sensor network. The existing optimization deployment strategies focus on how to achieve the optimal coverage or the maximal monitoring efficiency of the sensor network deployment, and lack research on the issue of when a deployed sensor network need to update its deployment. Considering that the parameters of the monitored targets by sensor network will vary over time, making the deployment a certain degree of time drift characteristic. In this paper, we propose a deployment drift detection algorithm based on graph stream for intelligent sensor networks (ISNs) to investigate the optimization deployment update time of sensor nodes for more efficient targets monitoring. We utilize graph stream to represent the topology of sensor network at different timestamps, and propose a projection fusion clustering algorithm based on Structural Clustering Algorithm for Networks (SCAN) to construct the tensor graph summarization within a sliding time window. According to the contrast between the node-level and the graph-level queries of the summary graph in adjacent windows, we refer Hoeffding boundary and graph contrastive loss function as the criterion to judge the optimal update time of the sensor network deployment. Experiments on Intel_Lab_Data and CIMIS datasets demonstrate that our approach can effectively detect the update moment of the optimal deployment of sensor network." @default.
- W4312894114 created "2023-01-05" @default.
- W4312894114 creator A5063163653 @default.
- W4312894114 creator A5068628016 @default.
- W4312894114 creator A5070435430 @default.
- W4312894114 date "2023-03-01" @default.
- W4312894114 modified "2023-10-18" @default.
- W4312894114 title "Drift Detection of Intelligent Sensor Networks Deployment Based on Graph Stream" @default.
- W4312894114 cites W1493007304 @default.
- W4312894114 cites W1550080987 @default.
- W4312894114 cites W2027657076 @default.
- W4312894114 cites W2073775491 @default.
- W4312894114 cites W2108781142 @default.
- W4312894114 cites W2117487426 @default.
- W4312894114 cites W2134008243 @default.
- W4312894114 cites W2335338051 @default.
- W4312894114 cites W2404779194 @default.
- W4312894114 cites W2418808916 @default.
- W4312894114 cites W2565021864 @default.
- W4312894114 cites W2567495367 @default.
- W4312894114 cites W2782490123 @default.
- W4312894114 cites W2810874043 @default.
- W4312894114 cites W2903383458 @default.
- W4312894114 cites W2938149683 @default.
- W4312894114 cites W2943801183 @default.
- W4312894114 cites W3022562330 @default.
- W4312894114 cites W3095746859 @default.
- W4312894114 cites W3136505081 @default.
- W4312894114 cites W4200632668 @default.
- W4312894114 cites W4206420234 @default.
- W4312894114 cites W4220897773 @default.
- W4312894114 doi "https://doi.org/10.1109/tnse.2022.3227909" @default.
- W4312894114 hasPublicationYear "2023" @default.
- W4312894114 type Work @default.
- W4312894114 citedByCount "0" @default.
- W4312894114 crossrefType "journal-article" @default.
- W4312894114 hasAuthorship W4312894114A5063163653 @default.
- W4312894114 hasAuthorship W4312894114A5068628016 @default.
- W4312894114 hasAuthorship W4312894114A5070435430 @default.
- W4312894114 hasConcept C105339364 @default.
- W4312894114 hasConcept C111919701 @default.
- W4312894114 hasConcept C113954288 @default.
- W4312894114 hasConcept C120314980 @default.
- W4312894114 hasConcept C132525143 @default.
- W4312894114 hasConcept C154945302 @default.
- W4312894114 hasConcept C199845137 @default.
- W4312894114 hasConcept C24590314 @default.
- W4312894114 hasConcept C31258907 @default.
- W4312894114 hasConcept C41008148 @default.
- W4312894114 hasConcept C73555534 @default.
- W4312894114 hasConcept C79403827 @default.
- W4312894114 hasConcept C80444323 @default.
- W4312894114 hasConceptScore W4312894114C105339364 @default.
- W4312894114 hasConceptScore W4312894114C111919701 @default.
- W4312894114 hasConceptScore W4312894114C113954288 @default.
- W4312894114 hasConceptScore W4312894114C120314980 @default.
- W4312894114 hasConceptScore W4312894114C132525143 @default.
- W4312894114 hasConceptScore W4312894114C154945302 @default.
- W4312894114 hasConceptScore W4312894114C199845137 @default.
- W4312894114 hasConceptScore W4312894114C24590314 @default.
- W4312894114 hasConceptScore W4312894114C31258907 @default.
- W4312894114 hasConceptScore W4312894114C41008148 @default.
- W4312894114 hasConceptScore W4312894114C73555534 @default.
- W4312894114 hasConceptScore W4312894114C79403827 @default.
- W4312894114 hasConceptScore W4312894114C80444323 @default.
- W4312894114 hasFunder F4320321001 @default.
- W4312894114 hasIssue "2" @default.
- W4312894114 hasLocation W43128941141 @default.
- W4312894114 hasOpenAccess W4312894114 @default.
- W4312894114 hasPrimaryLocation W43128941141 @default.
- W4312894114 hasRelatedWork W1756020207 @default.
- W4312894114 hasRelatedWork W1997009371 @default.
- W4312894114 hasRelatedWork W1998890379 @default.
- W4312894114 hasRelatedWork W2128212731 @default.
- W4312894114 hasRelatedWork W2264901616 @default.
- W4312894114 hasRelatedWork W2377216019 @default.
- W4312894114 hasRelatedWork W2545530093 @default.
- W4312894114 hasRelatedWork W2552678835 @default.
- W4312894114 hasRelatedWork W2909452277 @default.
- W4312894114 hasRelatedWork W3206922092 @default.
- W4312894114 hasVolume "10" @default.
- W4312894114 isParatext "false" @default.
- W4312894114 isRetracted "false" @default.
- W4312894114 workType "article" @default.