Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312902582> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4312902582 endingPage "18" @default.
- W4312902582 startingPage "18" @default.
- W4312902582 abstract "Alloys with excellent properties are always in significant demand for meeting the severe conditions of industrial applications. However, the design strategies of traditional alloys based on a single principal element have reached their limits in terms of property optimization. The concept of high-entropy alloys (HEAs) provides a new design strategy based on multicomponent elements, which may overcome the bottleneck problems that exist in traditional alloys. To further maximize the capability of HEAs, a novel additive manufacturing (AM) technique has been utilized to produce HEA components with the desired structures and properties. This review considers a new trend in the AM of HEAs, i.e., from the AM of single-phase HEAs to multiphase HEAs. Although most as-printed single-phase HEAs show superior tensile properties to as-cast ones, their strength is still not satisfactory, especially at elevated temperatures. Thus, multiphase HEAs are developed by introducing hard second phases, such as L12, BCC, carbides, oxides, nitrides, and so on. These phases can be introduced to the matrix using in situ alloying during AM or the subsequent heat treatment. Dislocation strengthening is considered as the main reason for improving the tensile properties of as-printed single-phase HEAs. In contrast, multiple strengthening and toughening mechanisms occur in as-printed multiphase HEAs, which can synergistically enhance their mechanical properties. Furthermore, machine learning provides an effective method to design new alloys with the desired properties and predict the optimal AM parameters for the designed alloys without tedious experiments. The synergistic combination of machine learning and AM will significantly speed up scientific advances and promote industrial applications." @default.
- W4312902582 created "2023-01-05" @default.
- W4312902582 creator A5006721558 @default.
- W4312902582 creator A5013432757 @default.
- W4312902582 creator A5016005359 @default.
- W4312902582 creator A5056690188 @default.
- W4312902582 creator A5063421014 @default.
- W4312902582 creator A5077037652 @default.
- W4312902582 creator A5079607587 @default.
- W4312902582 creator A5084741576 @default.
- W4312902582 creator A5087001051 @default.
- W4312902582 date "2022-01-01" @default.
- W4312902582 modified "2023-09-30" @default.
- W4312902582 title "New trends in additive manufacturing of high-entropy alloys and alloy design by machine learning: from single-phase to multiphase systems" @default.
- W4312902582 doi "https://doi.org/10.20517/jmi.2022.27" @default.
- W4312902582 hasPublicationYear "2022" @default.
- W4312902582 type Work @default.
- W4312902582 citedByCount "4" @default.
- W4312902582 countsByYear W43129025822022 @default.
- W4312902582 countsByYear W43129025822023 @default.
- W4312902582 crossrefType "journal-article" @default.
- W4312902582 hasAuthorship W4312902582A5006721558 @default.
- W4312902582 hasAuthorship W4312902582A5013432757 @default.
- W4312902582 hasAuthorship W4312902582A5016005359 @default.
- W4312902582 hasAuthorship W4312902582A5056690188 @default.
- W4312902582 hasAuthorship W4312902582A5063421014 @default.
- W4312902582 hasAuthorship W4312902582A5077037652 @default.
- W4312902582 hasAuthorship W4312902582A5079607587 @default.
- W4312902582 hasAuthorship W4312902582A5084741576 @default.
- W4312902582 hasAuthorship W4312902582A5087001051 @default.
- W4312902582 hasBestOaLocation W43129025821 @default.
- W4312902582 hasConcept C112950240 @default.
- W4312902582 hasConcept C127413603 @default.
- W4312902582 hasConcept C159985019 @default.
- W4312902582 hasConcept C178790620 @default.
- W4312902582 hasConcept C185592680 @default.
- W4312902582 hasConcept C191897082 @default.
- W4312902582 hasConcept C192562407 @default.
- W4312902582 hasConcept C194760766 @default.
- W4312902582 hasConcept C2779227376 @default.
- W4312902582 hasConcept C2780026712 @default.
- W4312902582 hasConcept C2780299837 @default.
- W4312902582 hasConcept C44280652 @default.
- W4312902582 hasConcept C5335593 @default.
- W4312902582 hasConcept C78519656 @default.
- W4312902582 hasConceptScore W4312902582C112950240 @default.
- W4312902582 hasConceptScore W4312902582C127413603 @default.
- W4312902582 hasConceptScore W4312902582C159985019 @default.
- W4312902582 hasConceptScore W4312902582C178790620 @default.
- W4312902582 hasConceptScore W4312902582C185592680 @default.
- W4312902582 hasConceptScore W4312902582C191897082 @default.
- W4312902582 hasConceptScore W4312902582C192562407 @default.
- W4312902582 hasConceptScore W4312902582C194760766 @default.
- W4312902582 hasConceptScore W4312902582C2779227376 @default.
- W4312902582 hasConceptScore W4312902582C2780026712 @default.
- W4312902582 hasConceptScore W4312902582C2780299837 @default.
- W4312902582 hasConceptScore W4312902582C44280652 @default.
- W4312902582 hasConceptScore W4312902582C5335593 @default.
- W4312902582 hasConceptScore W4312902582C78519656 @default.
- W4312902582 hasIssue "4" @default.
- W4312902582 hasLocation W43129025821 @default.
- W4312902582 hasOpenAccess W4312902582 @default.
- W4312902582 hasPrimaryLocation W43129025821 @default.
- W4312902582 hasRelatedWork W1184757907 @default.
- W4312902582 hasRelatedWork W1959169792 @default.
- W4312902582 hasRelatedWork W2033388865 @default.
- W4312902582 hasRelatedWork W2067778584 @default.
- W4312902582 hasRelatedWork W2360928528 @default.
- W4312902582 hasRelatedWork W2766515653 @default.
- W4312902582 hasRelatedWork W2783283445 @default.
- W4312902582 hasRelatedWork W3140121722 @default.
- W4312902582 hasRelatedWork W4210368626 @default.
- W4312902582 hasRelatedWork W4362455380 @default.
- W4312902582 hasVolume "2" @default.
- W4312902582 isParatext "false" @default.
- W4312902582 isRetracted "false" @default.
- W4312902582 workType "article" @default.