Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312904975> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4312904975 endingPage "103" @default.
- W4312904975 startingPage "90" @default.
- W4312904975 abstract "Brain tumor has surpassed all other types of cancers as it is the most diagnosed malignancy worldwide, and it is also the leading cause of death. Early detection and diagnosis of a brain tumor allow doctors to give better therapy and a higher chance for the patient's life. Recently, many strategies that leverage machine learning and deep learning models for detection and categorization have been presented. This chapter focuses on the design of a novel brain tumor detection and classification framework using well-known deep transfer learning models such as DenseNet201, DenseNet169, DenseNet121, MobileNet_v2, VGG19, VGG16, and Xception. Performance evaluation of the proposed framework is evaluated using a benchmark dataset in terms of accuracy and loss. It is observed that with DenseNet201, a training accuracy of 97.49% and a validation accuracy of 96.43% are observed. However, for MobileNet v2, Densenet169, and Xception model, 96% accuracy is observed. As a result, it is observed that the DenseNet201 model outperformed all other models in terms of accuracy." @default.
- W4312904975 created "2023-01-05" @default.
- W4312904975 creator A5036820521 @default.
- W4312904975 creator A5066168652 @default.
- W4312904975 creator A5090381393 @default.
- W4312904975 date "2022-09-16" @default.
- W4312904975 modified "2023-10-17" @default.
- W4312904975 title "Towards Design of Brain Tumor Detection Framework Using Deep Transfer Learning Techniques" @default.
- W4312904975 cites W2531409750 @default.
- W4312904975 cites W2783755104 @default.
- W4312904975 cites W2794026873 @default.
- W4312904975 cites W2945839551 @default.
- W4312904975 cites W2947735999 @default.
- W4312904975 cites W2980584449 @default.
- W4312904975 cites W2982185347 @default.
- W4312904975 cites W2994753452 @default.
- W4312904975 cites W3006547840 @default.
- W4312904975 cites W3040660552 @default.
- W4312904975 cites W3142502543 @default.
- W4312904975 cites W4200473996 @default.
- W4312904975 cites W4220904204 @default.
- W4312904975 doi "https://doi.org/10.4018/978-1-6684-5264-6.ch004" @default.
- W4312904975 hasPublicationYear "2022" @default.
- W4312904975 type Work @default.
- W4312904975 citedByCount "0" @default.
- W4312904975 crossrefType "book-chapter" @default.
- W4312904975 hasAuthorship W4312904975A5036820521 @default.
- W4312904975 hasAuthorship W4312904975A5066168652 @default.
- W4312904975 hasAuthorship W4312904975A5090381393 @default.
- W4312904975 hasConcept C108583219 @default.
- W4312904975 hasConcept C119857082 @default.
- W4312904975 hasConcept C13280743 @default.
- W4312904975 hasConcept C142724271 @default.
- W4312904975 hasConcept C150899416 @default.
- W4312904975 hasConcept C153083717 @default.
- W4312904975 hasConcept C154945302 @default.
- W4312904975 hasConcept C185798385 @default.
- W4312904975 hasConcept C205649164 @default.
- W4312904975 hasConcept C2779130545 @default.
- W4312904975 hasConcept C41008148 @default.
- W4312904975 hasConcept C71924100 @default.
- W4312904975 hasConcept C94124525 @default.
- W4312904975 hasConceptScore W4312904975C108583219 @default.
- W4312904975 hasConceptScore W4312904975C119857082 @default.
- W4312904975 hasConceptScore W4312904975C13280743 @default.
- W4312904975 hasConceptScore W4312904975C142724271 @default.
- W4312904975 hasConceptScore W4312904975C150899416 @default.
- W4312904975 hasConceptScore W4312904975C153083717 @default.
- W4312904975 hasConceptScore W4312904975C154945302 @default.
- W4312904975 hasConceptScore W4312904975C185798385 @default.
- W4312904975 hasConceptScore W4312904975C205649164 @default.
- W4312904975 hasConceptScore W4312904975C2779130545 @default.
- W4312904975 hasConceptScore W4312904975C41008148 @default.
- W4312904975 hasConceptScore W4312904975C71924100 @default.
- W4312904975 hasConceptScore W4312904975C94124525 @default.
- W4312904975 hasLocation W43129049751 @default.
- W4312904975 hasOpenAccess W4312904975 @default.
- W4312904975 hasPrimaryLocation W43129049751 @default.
- W4312904975 hasRelatedWork W2946016983 @default.
- W4312904975 hasRelatedWork W2960456850 @default.
- W4312904975 hasRelatedWork W4213299466 @default.
- W4312904975 hasRelatedWork W4288040045 @default.
- W4312904975 hasRelatedWork W4312200629 @default.
- W4312904975 hasRelatedWork W4312685930 @default.
- W4312904975 hasRelatedWork W4317565044 @default.
- W4312904975 hasRelatedWork W4318834068 @default.
- W4312904975 hasRelatedWork W4318957922 @default.
- W4312904975 hasRelatedWork W4323049313 @default.
- W4312904975 isParatext "false" @default.
- W4312904975 isRetracted "false" @default.
- W4312904975 workType "book-chapter" @default.