Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312921322> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4312921322 abstract "In computer engineering and several other fields across the globe, big data analytics seems to be a developing research discipline. These would have made significant progress in numerous different applications. This includes online company networks, finance, healthcare, energy, agriculture, and many other industries. Various innovative machine learning methods have been established to provide big data projecting complex algorithms. The surveillance systems regularly gather a vast amount of data. Different forecasting methods are suggested for estimating energy consumption. The information on various machine learning approaches is investigated in this work. Additionally, this article examined modern prediction methodology. Furthermore, big data combined with traditional knowledge are used to test prediction models. In light of the findings of this research, gaps in existing studies are highlighted, and directions for future research are suggested." @default.
- W4312921322 created "2023-01-05" @default.
- W4312921322 creator A5086421034 @default.
- W4312921322 date "2022-10-07" @default.
- W4312921322 modified "2023-09-27" @default.
- W4312921322 title "Approaches Involving Big Data Analytics (BDA) Using Machine Learning, Described" @default.
- W4312921322 cites W1512978391 @default.
- W4312921322 cites W1774848501 @default.
- W4312921322 cites W1935979693 @default.
- W4312921322 cites W1984020445 @default.
- W4312921322 cites W2025001960 @default.
- W4312921322 cites W2080731889 @default.
- W4312921322 cites W2096544401 @default.
- W4312921322 cites W2109574129 @default.
- W4312921322 cites W2118023920 @default.
- W4312921322 cites W2145511633 @default.
- W4312921322 cites W2183934913 @default.
- W4312921322 cites W2191365824 @default.
- W4312921322 cites W2343044157 @default.
- W4312921322 cites W2609731728 @default.
- W4312921322 cites W2800696118 @default.
- W4312921322 cites W2811374032 @default.
- W4312921322 cites W2903749698 @default.
- W4312921322 cites W2959063495 @default.
- W4312921322 cites W2965017818 @default.
- W4312921322 cites W3002685882 @default.
- W4312921322 cites W3002955815 @default.
- W4312921322 cites W3012532133 @default.
- W4312921322 cites W3015351929 @default.
- W4312921322 cites W3028458423 @default.
- W4312921322 cites W3036873236 @default.
- W4312921322 cites W3038060658 @default.
- W4312921322 cites W3043654723 @default.
- W4312921322 cites W3047562107 @default.
- W4312921322 cites W3083228182 @default.
- W4312921322 cites W3093272760 @default.
- W4312921322 cites W3096500336 @default.
- W4312921322 cites W3214823556 @default.
- W4312921322 doi "https://doi.org/10.1109/gcat55367.2022.9972108" @default.
- W4312921322 hasPublicationYear "2022" @default.
- W4312921322 type Work @default.
- W4312921322 citedByCount "1" @default.
- W4312921322 countsByYear W43129213222023 @default.
- W4312921322 crossrefType "proceedings-article" @default.
- W4312921322 hasAuthorship W4312921322A5086421034 @default.
- W4312921322 hasConcept C115903868 @default.
- W4312921322 hasConcept C118487528 @default.
- W4312921322 hasConcept C119599485 @default.
- W4312921322 hasConcept C119857082 @default.
- W4312921322 hasConcept C124101348 @default.
- W4312921322 hasConcept C127413603 @default.
- W4312921322 hasConcept C154945302 @default.
- W4312921322 hasConcept C175801342 @default.
- W4312921322 hasConcept C2522767166 @default.
- W4312921322 hasConcept C2775899829 @default.
- W4312921322 hasConcept C2780165032 @default.
- W4312921322 hasConcept C41008148 @default.
- W4312921322 hasConcept C67186912 @default.
- W4312921322 hasConcept C71924100 @default.
- W4312921322 hasConcept C75684735 @default.
- W4312921322 hasConcept C79158427 @default.
- W4312921322 hasConcept C83209312 @default.
- W4312921322 hasConceptScore W4312921322C115903868 @default.
- W4312921322 hasConceptScore W4312921322C118487528 @default.
- W4312921322 hasConceptScore W4312921322C119599485 @default.
- W4312921322 hasConceptScore W4312921322C119857082 @default.
- W4312921322 hasConceptScore W4312921322C124101348 @default.
- W4312921322 hasConceptScore W4312921322C127413603 @default.
- W4312921322 hasConceptScore W4312921322C154945302 @default.
- W4312921322 hasConceptScore W4312921322C175801342 @default.
- W4312921322 hasConceptScore W4312921322C2522767166 @default.
- W4312921322 hasConceptScore W4312921322C2775899829 @default.
- W4312921322 hasConceptScore W4312921322C2780165032 @default.
- W4312921322 hasConceptScore W4312921322C41008148 @default.
- W4312921322 hasConceptScore W4312921322C67186912 @default.
- W4312921322 hasConceptScore W4312921322C71924100 @default.
- W4312921322 hasConceptScore W4312921322C75684735 @default.
- W4312921322 hasConceptScore W4312921322C79158427 @default.
- W4312921322 hasConceptScore W4312921322C83209312 @default.
- W4312921322 hasLocation W43129213221 @default.
- W4312921322 hasOpenAccess W4312921322 @default.
- W4312921322 hasPrimaryLocation W43129213221 @default.
- W4312921322 hasRelatedWork W1563794669 @default.
- W4312921322 hasRelatedWork W2052370551 @default.
- W4312921322 hasRelatedWork W2539018748 @default.
- W4312921322 hasRelatedWork W2783985323 @default.
- W4312921322 hasRelatedWork W2998881927 @default.
- W4312921322 hasRelatedWork W3138622659 @default.
- W4312921322 hasRelatedWork W3156072338 @default.
- W4312921322 hasRelatedWork W4205647429 @default.
- W4312921322 hasRelatedWork W4240347109 @default.
- W4312921322 hasRelatedWork W4310083754 @default.
- W4312921322 isParatext "false" @default.
- W4312921322 isRetracted "false" @default.
- W4312921322 workType "article" @default.