Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312925453> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4312925453 abstract "Altering digital content is one of the major concerns experienced in the digital environment. Because of the developments in image modification applications in this digital era, the tampering of images for harmful reasons has proliferated, necessitating the detection of such manipulation before it misleads in any of the applications. A framework based on DeepLabv3+ is presented in this paper for detecting several forms of forgeries and locating the altered areas precisely within the images. To pre-process the forged photos, Error Level Analysis (ELA) is used, which differentiates the areas with varying quantization error levels. The complete framework is trained using the pre-processed images as input. The encoder side of the DeepLabv3+ architecture uses a pre-trained ResN et50 network for transfer learning. DeepLabv3+ uses Atrous convolution that helps to get the broader field of view and extracts contextual features for enhancing the precision of localization. At the decoder, the output features of the encoder are merged with the low-level features of the input image to appropriately locate the forged area. With high precision, this framework can identify and locate many types of manipulations. The findings illustrate that the proposed framework outperforms several existing forged area localization techniques." @default.
- W4312925453 created "2023-01-05" @default.
- W4312925453 creator A5057309150 @default.
- W4312925453 creator A5068458937 @default.
- W4312925453 date "2022-10-07" @default.
- W4312925453 modified "2023-09-26" @default.
- W4312925453 title "A Deep Learning Framework with Transfer Learning Approach for Image Forgery Localization" @default.
- W4312925453 cites W1490753124 @default.
- W4312925453 cites W1751423146 @default.
- W4312925453 cites W1987535593 @default.
- W4312925453 cites W2071794886 @default.
- W4312925453 cites W2169439181 @default.
- W4312925453 cites W2194775991 @default.
- W4312925453 cites W2292413181 @default.
- W4312925453 cites W2345141063 @default.
- W4312925453 cites W2412782625 @default.
- W4312925453 cites W2548506527 @default.
- W4312925453 cites W2618448645 @default.
- W4312925453 cites W2752015292 @default.
- W4312925453 cites W2888126606 @default.
- W4312925453 cites W2911605501 @default.
- W4312925453 cites W2912648825 @default.
- W4312925453 cites W2964309882 @default.
- W4312925453 cites W2978985845 @default.
- W4312925453 cites W3015516611 @default.
- W4312925453 cites W3036591324 @default.
- W4312925453 cites W3085366969 @default.
- W4312925453 doi "https://doi.org/10.1109/gcat55367.2022.9971986" @default.
- W4312925453 hasPublicationYear "2022" @default.
- W4312925453 type Work @default.
- W4312925453 citedByCount "0" @default.
- W4312925453 crossrefType "proceedings-article" @default.
- W4312925453 hasAuthorship W4312925453A5057309150 @default.
- W4312925453 hasAuthorship W4312925453A5068458937 @default.
- W4312925453 hasConcept C108583219 @default.
- W4312925453 hasConcept C111919701 @default.
- W4312925453 hasConcept C115961682 @default.
- W4312925453 hasConcept C118505674 @default.
- W4312925453 hasConcept C150899416 @default.
- W4312925453 hasConcept C153180895 @default.
- W4312925453 hasConcept C154945302 @default.
- W4312925453 hasConcept C202444582 @default.
- W4312925453 hasConcept C28855332 @default.
- W4312925453 hasConcept C31972630 @default.
- W4312925453 hasConcept C33923547 @default.
- W4312925453 hasConcept C41008148 @default.
- W4312925453 hasConcept C45347329 @default.
- W4312925453 hasConcept C50644808 @default.
- W4312925453 hasConcept C9652623 @default.
- W4312925453 hasConcept C98045186 @default.
- W4312925453 hasConceptScore W4312925453C108583219 @default.
- W4312925453 hasConceptScore W4312925453C111919701 @default.
- W4312925453 hasConceptScore W4312925453C115961682 @default.
- W4312925453 hasConceptScore W4312925453C118505674 @default.
- W4312925453 hasConceptScore W4312925453C150899416 @default.
- W4312925453 hasConceptScore W4312925453C153180895 @default.
- W4312925453 hasConceptScore W4312925453C154945302 @default.
- W4312925453 hasConceptScore W4312925453C202444582 @default.
- W4312925453 hasConceptScore W4312925453C28855332 @default.
- W4312925453 hasConceptScore W4312925453C31972630 @default.
- W4312925453 hasConceptScore W4312925453C33923547 @default.
- W4312925453 hasConceptScore W4312925453C41008148 @default.
- W4312925453 hasConceptScore W4312925453C45347329 @default.
- W4312925453 hasConceptScore W4312925453C50644808 @default.
- W4312925453 hasConceptScore W4312925453C9652623 @default.
- W4312925453 hasConceptScore W4312925453C98045186 @default.
- W4312925453 hasLocation W43129254531 @default.
- W4312925453 hasOpenAccess W4312925453 @default.
- W4312925453 hasPrimaryLocation W43129254531 @default.
- W4312925453 hasRelatedWork W2738221750 @default.
- W4312925453 hasRelatedWork W2889705046 @default.
- W4312925453 hasRelatedWork W2949280030 @default.
- W4312925453 hasRelatedWork W2949506716 @default.
- W4312925453 hasRelatedWork W2953350812 @default.
- W4312925453 hasRelatedWork W2997709384 @default.
- W4312925453 hasRelatedWork W3165266428 @default.
- W4312925453 hasRelatedWork W3166467183 @default.
- W4312925453 hasRelatedWork W3192840557 @default.
- W4312925453 hasRelatedWork W4245792239 @default.
- W4312925453 isParatext "false" @default.
- W4312925453 isRetracted "false" @default.
- W4312925453 workType "article" @default.