Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312930288> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4312930288 abstract "Here we will discuss the machine learning algorithms and usages in Cybersecurity. Technologies are moving very fast. Machine learning is all about developing a new pattern and managing those patterns with the help of algorithms. It will provide real time active attacks, which will help cybersecurity teams prevent threats. It can help the organization use its resources more effectively, reducing the routing work time. In the digital world, we are encountering a lot of security breaches and malware in daily life. Machine learning will help us protect the data and defend us against security breaches, malware, and viruses. Machine learning will provide more services for Cybersecurity. 1. Endpoint protection, 2. Scanning for data breaches, 3. Fast analysis. Today, machine learning is an essential technology for Cybersecurity. The following three algorithms will provide network protection to individuals or large organizations: regression, clustering, and classification algorithms. We can analyze each layer's depth and identify the attacks with network traffic analytics. Many machine learning approaches are used in Cybersecurity as a warning system. But the machine learning system will provide more accuracy than the human equivalent." @default.
- W4312930288 created "2023-01-05" @default.
- W4312930288 creator A5070702490 @default.
- W4312930288 creator A5077962462 @default.
- W4312930288 date "2022-10-07" @default.
- W4312930288 modified "2023-10-16" @default.
- W4312930288 title "Machine Learning Algorithms and Approaches used in Cybersecurity" @default.
- W4312930288 cites W2107311958 @default.
- W4312930288 cites W2277854822 @default.
- W4312930288 cites W2490548105 @default.
- W4312930288 cites W2904509436 @default.
- W4312930288 doi "https://doi.org/10.1109/gcat55367.2022.9971847" @default.
- W4312930288 hasPublicationYear "2022" @default.
- W4312930288 type Work @default.
- W4312930288 citedByCount "0" @default.
- W4312930288 crossrefType "proceedings-article" @default.
- W4312930288 hasAuthorship W4312930288A5070702490 @default.
- W4312930288 hasAuthorship W4312930288A5077962462 @default.
- W4312930288 hasConcept C11413529 @default.
- W4312930288 hasConcept C119857082 @default.
- W4312930288 hasConcept C124101348 @default.
- W4312930288 hasConcept C154945302 @default.
- W4312930288 hasConcept C38652104 @default.
- W4312930288 hasConcept C41008148 @default.
- W4312930288 hasConcept C541664917 @default.
- W4312930288 hasConcept C73555534 @default.
- W4312930288 hasConcept C79158427 @default.
- W4312930288 hasConceptScore W4312930288C11413529 @default.
- W4312930288 hasConceptScore W4312930288C119857082 @default.
- W4312930288 hasConceptScore W4312930288C124101348 @default.
- W4312930288 hasConceptScore W4312930288C154945302 @default.
- W4312930288 hasConceptScore W4312930288C38652104 @default.
- W4312930288 hasConceptScore W4312930288C41008148 @default.
- W4312930288 hasConceptScore W4312930288C541664917 @default.
- W4312930288 hasConceptScore W4312930288C73555534 @default.
- W4312930288 hasConceptScore W4312930288C79158427 @default.
- W4312930288 hasLocation W43129302881 @default.
- W4312930288 hasOpenAccess W4312930288 @default.
- W4312930288 hasPrimaryLocation W43129302881 @default.
- W4312930288 hasRelatedWork W187572568 @default.
- W4312930288 hasRelatedWork W2105037940 @default.
- W4312930288 hasRelatedWork W2942650110 @default.
- W4312930288 hasRelatedWork W2952645149 @default.
- W4312930288 hasRelatedWork W2968586400 @default.
- W4312930288 hasRelatedWork W3196893387 @default.
- W4312930288 hasRelatedWork W4286794619 @default.
- W4312930288 hasRelatedWork W4289244019 @default.
- W4312930288 hasRelatedWork W4316087074 @default.
- W4312930288 hasRelatedWork W3124810669 @default.
- W4312930288 isParatext "false" @default.
- W4312930288 isRetracted "false" @default.
- W4312930288 workType "article" @default.