Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312933120> ?p ?o ?g. }
- W4312933120 endingPage "1" @default.
- W4312933120 startingPage "1" @default.
- W4312933120 abstract "Biometrics have attracted growing research interests as the information security and safety gain increasing attention to date. As a kind of important biomedical signal, Electroen-cephalogram (EEG) contains valuable information about identity, emotionality, personality, etc. Thus, automatically distinguishing the identities based on EEG is beneficial to the development of biometrics, forensics and informatics. Although deep learning has absorbed much research attention for the issue of EEG-based person identification, the performance enhancement of this methodology seems to have hit a bottleneck recently. Hence, by rethinking the problems haunting this issue, we plan to reinvigorate the conventional method pipeline, and put forward a novel and effective tensorial scheme away from the deep learning mainstream. Specifically, the proposed tensorial scheme extracts the effective tensorial representation from multi-channel EEG at first; then, the scheme performs the designed tensorial learning to improve the discriminability of the feature space; finally, the scheme carries out the devised tensorial measurement in the learned metric space for classification. Experimental results have demonstrated the superiority of proposed scheme over the related advanced approaches by means of the challenging benchmark databases DEAP, SEED and DREAMER." @default.
- W4312933120 created "2023-01-05" @default.
- W4312933120 creator A5007904319 @default.
- W4312933120 creator A5018898066 @default.
- W4312933120 creator A5023925791 @default.
- W4312933120 creator A5030443074 @default.
- W4312933120 creator A5050849718 @default.
- W4312933120 creator A5051041002 @default.
- W4312933120 date "2022-01-01" @default.
- W4312933120 modified "2023-10-16" @default.
- W4312933120 title "A Novel Tensorial Scheme for EEG-Based Person Identification" @default.
- W4312933120 cites W1505774494 @default.
- W4312933120 cites W1556934133 @default.
- W4312933120 cites W1915310969 @default.
- W4312933120 cites W1947251450 @default.
- W4312933120 cites W1970727126 @default.
- W4312933120 cites W1984030600 @default.
- W4312933120 cites W2002055708 @default.
- W4312933120 cites W2011256616 @default.
- W4312933120 cites W2043356094 @default.
- W4312933120 cites W2079564095 @default.
- W4312933120 cites W2108648583 @default.
- W4312933120 cites W2154624311 @default.
- W4312933120 cites W2159613158 @default.
- W4312933120 cites W2160845636 @default.
- W4312933120 cites W2165533158 @default.
- W4312933120 cites W2293554103 @default.
- W4312933120 cites W2295779229 @default.
- W4312933120 cites W2477033421 @default.
- W4312933120 cites W2505962718 @default.
- W4312933120 cites W2528460875 @default.
- W4312933120 cites W2538789180 @default.
- W4312933120 cites W2547913627 @default.
- W4312933120 cites W2559223397 @default.
- W4312933120 cites W2581106238 @default.
- W4312933120 cites W2599124244 @default.
- W4312933120 cites W2765616450 @default.
- W4312933120 cites W2896656205 @default.
- W4312933120 cites W2898161677 @default.
- W4312933120 cites W2914797429 @default.
- W4312933120 cites W2916700883 @default.
- W4312933120 cites W2933506701 @default.
- W4312933120 cites W2940492946 @default.
- W4312933120 cites W2941772112 @default.
- W4312933120 cites W2943537172 @default.
- W4312933120 cites W2943680334 @default.
- W4312933120 cites W2956072276 @default.
- W4312933120 cites W2965942235 @default.
- W4312933120 cites W3003644155 @default.
- W4312933120 cites W3004827935 @default.
- W4312933120 cites W3011757244 @default.
- W4312933120 cites W3012089473 @default.
- W4312933120 cites W3036502606 @default.
- W4312933120 cites W3039568965 @default.
- W4312933120 cites W3040413318 @default.
- W4312933120 cites W3046236234 @default.
- W4312933120 cites W3047203759 @default.
- W4312933120 cites W3075564640 @default.
- W4312933120 cites W3083321496 @default.
- W4312933120 cites W3084797570 @default.
- W4312933120 cites W3089515377 @default.
- W4312933120 cites W3093558716 @default.
- W4312933120 cites W3139962588 @default.
- W4312933120 cites W3151549332 @default.
- W4312933120 cites W3192736189 @default.
- W4312933120 cites W3194375331 @default.
- W4312933120 cites W3202356044 @default.
- W4312933120 cites W3207211939 @default.
- W4312933120 cites W4200550087 @default.
- W4312933120 cites W4205793477 @default.
- W4312933120 cites W4206034043 @default.
- W4312933120 cites W4245173785 @default.
- W4312933120 cites W815051709 @default.
- W4312933120 doi "https://doi.org/10.1109/tim.2022.3225016" @default.
- W4312933120 hasPublicationYear "2022" @default.
- W4312933120 type Work @default.
- W4312933120 citedByCount "2" @default.
- W4312933120 countsByYear W43129331202023 @default.
- W4312933120 crossrefType "journal-article" @default.
- W4312933120 hasAuthorship W4312933120A5007904319 @default.
- W4312933120 hasAuthorship W4312933120A5018898066 @default.
- W4312933120 hasAuthorship W4312933120A5023925791 @default.
- W4312933120 hasAuthorship W4312933120A5030443074 @default.
- W4312933120 hasAuthorship W4312933120A5050849718 @default.
- W4312933120 hasAuthorship W4312933120A5051041002 @default.
- W4312933120 hasConcept C116834253 @default.
- W4312933120 hasConcept C118552586 @default.
- W4312933120 hasConcept C119857082 @default.
- W4312933120 hasConcept C127413603 @default.
- W4312933120 hasConcept C13280743 @default.
- W4312933120 hasConcept C134306372 @default.
- W4312933120 hasConcept C138885662 @default.
- W4312933120 hasConcept C149635348 @default.
- W4312933120 hasConcept C153180895 @default.
- W4312933120 hasConcept C154945302 @default.
- W4312933120 hasConcept C15744967 @default.
- W4312933120 hasConcept C176217482 @default.
- W4312933120 hasConcept C184297639 @default.