Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312933224> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4312933224 endingPage "27" @default.
- W4312933224 startingPage "9" @default.
- W4312933224 abstract "The paper investigates and evaluates the possibilities of using an artificial neural network. Attention is paid to the structural and operational features of the artificial neural networks, the learning processes used in them and their capabilities. The methods of application of artificial neural network for the purpose of control and diagnostics of dynamic systems of the electric drives are considered. A comparative analysis of the electric drive systems with PID regulators and neuroregulators was conducted. The expediency and necessity of improving the abilities of training artificial neural networks for adaptive control and diagnostics of the electric drives with incomplete description have been revealed, including the drives operating under random influences and dynamically changing modes. The main circumstances preventing the use of artificial neural networks, the laws of the choice of types and methods of optimization in the process of artificial neural networks (ANN) training and the lack of criteria for choosing the number of the neurons in the network are given. A review of well-known works devoted to the use of ANN in the electric drive systems, as well as a comparative analysis of the feasibility of using gradient and genetic methods of their training are carried out. The comparative analysis was carried out by summarizing the conclusions in various published works. Analysis shows that, in most cases, networks trained by genetic algorithms provide more accurate results, easier learning, and shorter duration. At the same time, in some cases, the use of the back propagation algorithm in the certain problems leads to better results. Thus, it can be stated that the use of the preferred algorithm depends on the formulation of the task." @default.
- W4312933224 created "2023-01-05" @default.
- W4312933224 creator A5056031542 @default.
- W4312933224 creator A5059708395 @default.
- W4312933224 creator A5073376785 @default.
- W4312933224 date "2022-01-01" @default.
- W4312933224 modified "2023-09-26" @default.
- W4312933224 title "EVALUATING THE POSSIBILITIES OF APPLYING AN ARTIFICIAL NEURAL NETWORK FOR CONTROL AND DIAGNOSTICS OF THE ELECTRIC DRIVE SYSTEMS" @default.
- W4312933224 cites W1935515061 @default.
- W4312933224 cites W1965173537 @default.
- W4312933224 cites W1980480036 @default.
- W4312933224 cites W2002016471 @default.
- W4312933224 cites W2010605793 @default.
- W4312933224 cites W2020435061 @default.
- W4312933224 cites W2111221652 @default.
- W4312933224 cites W2130372754 @default.
- W4312933224 cites W2167175022 @default.
- W4312933224 cites W2261320361 @default.
- W4312933224 cites W2328163167 @default.
- W4312933224 cites W2561472864 @default.
- W4312933224 cites W2734812663 @default.
- W4312933224 cites W2800712582 @default.
- W4312933224 cites W2919807363 @default.
- W4312933224 cites W2939200077 @default.
- W4312933224 cites W2980578413 @default.
- W4312933224 cites W3012621877 @default.
- W4312933224 cites W4243884777 @default.
- W4312933224 cites W4253203373 @default.
- W4312933224 doi "https://doi.org/10.53297/18293328-2022.1-9" @default.
- W4312933224 hasPublicationYear "2022" @default.
- W4312933224 type Work @default.
- W4312933224 citedByCount "0" @default.
- W4312933224 crossrefType "journal-article" @default.
- W4312933224 hasAuthorship W4312933224A5056031542 @default.
- W4312933224 hasAuthorship W4312933224A5059708395 @default.
- W4312933224 hasAuthorship W4312933224A5073376785 @default.
- W4312933224 hasBestOaLocation W43129332241 @default.
- W4312933224 hasConcept C111919701 @default.
- W4312933224 hasConcept C119857082 @default.
- W4312933224 hasConcept C127413603 @default.
- W4312933224 hasConcept C133731056 @default.
- W4312933224 hasConcept C154945302 @default.
- W4312933224 hasConcept C155032097 @default.
- W4312933224 hasConcept C2775924081 @default.
- W4312933224 hasConcept C41008148 @default.
- W4312933224 hasConcept C50644808 @default.
- W4312933224 hasConcept C8880873 @default.
- W4312933224 hasConcept C98045186 @default.
- W4312933224 hasConceptScore W4312933224C111919701 @default.
- W4312933224 hasConceptScore W4312933224C119857082 @default.
- W4312933224 hasConceptScore W4312933224C127413603 @default.
- W4312933224 hasConceptScore W4312933224C133731056 @default.
- W4312933224 hasConceptScore W4312933224C154945302 @default.
- W4312933224 hasConceptScore W4312933224C155032097 @default.
- W4312933224 hasConceptScore W4312933224C2775924081 @default.
- W4312933224 hasConceptScore W4312933224C41008148 @default.
- W4312933224 hasConceptScore W4312933224C50644808 @default.
- W4312933224 hasConceptScore W4312933224C8880873 @default.
- W4312933224 hasConceptScore W4312933224C98045186 @default.
- W4312933224 hasLocation W43129332241 @default.
- W4312933224 hasOpenAccess W4312933224 @default.
- W4312933224 hasPrimaryLocation W43129332241 @default.
- W4312933224 hasRelatedWork W1500372396 @default.
- W4312933224 hasRelatedWork W2038846321 @default.
- W4312933224 hasRelatedWork W2242027171 @default.
- W4312933224 hasRelatedWork W2354205711 @default.
- W4312933224 hasRelatedWork W2383742469 @default.
- W4312933224 hasRelatedWork W2435007635 @default.
- W4312933224 hasRelatedWork W3198215288 @default.
- W4312933224 hasRelatedWork W4200544071 @default.
- W4312933224 hasRelatedWork W4213117502 @default.
- W4312933224 hasRelatedWork W1629725936 @default.
- W4312933224 isParatext "false" @default.
- W4312933224 isRetracted "false" @default.
- W4312933224 workType "article" @default.