Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312933730> ?p ?o ?g. }
- W4312933730 abstract "Videos typically record the streaming and continuous visual data as discrete consecutive frames. Since the storage cost is expensive for videos of high fidelity, most of them are stored in a relatively low resolution and frame rate. Recent works of Space-Time Video Super-Resolution (STVSR) are developed to incorporate temporal interpolation and spatial super-resolution in a unified framework. However, most of them only support a fixed up-sampling scale, which limits their flexibility and applications. In this work, instead of following the discrete representations, we propose Video Implicit Neural Representation (VideoINR), and we show its applications for STVSR. The learned implicit neural representation can be decoded to videos of arbitrary spatial resolution and frame rate. We show that VideoINR achieves competitive performances with state-of-the-art STVSR methods on common up-sampling scales and significantly outperforms prior works on continuous and out-of-training-distribution scales. Our project page is at here and code is available at https://github.com/Picsart-AI-Research/VideoINR-Continuous-Space-Time-Super-Resolution." @default.
- W4312933730 created "2023-01-05" @default.
- W4312933730 creator A5002072267 @default.
- W4312933730 creator A5034197490 @default.
- W4312933730 creator A5038804187 @default.
- W4312933730 creator A5046341376 @default.
- W4312933730 creator A5048522863 @default.
- W4312933730 creator A5049465421 @default.
- W4312933730 creator A5063957844 @default.
- W4312933730 creator A5066028215 @default.
- W4312933730 date "2022-06-01" @default.
- W4312933730 modified "2023-10-16" @default.
- W4312933730 title "VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution" @default.
- W4312933730 cites W1981990039 @default.
- W4312933730 cites W2133665775 @default.
- W4312933730 cites W2157087088 @default.
- W4312933730 cites W2557227117 @default.
- W4312933730 cites W2560533888 @default.
- W4312933730 cites W2601564443 @default.
- W4312933730 cites W2738579427 @default.
- W4312933730 cites W2798664922 @default.
- W4312933730 cites W2949258649 @default.
- W4312933730 cites W2962849139 @default.
- W4312933730 cites W2963093735 @default.
- W4312933730 cites W2963268050 @default.
- W4312933730 cites W2963524571 @default.
- W4312933730 cites W2963782415 @default.
- W4312933730 cites W2963926543 @default.
- W4312933730 cites W2964040059 @default.
- W4312933730 cites W2964286567 @default.
- W4312933730 cites W2965669158 @default.
- W4312933730 cites W2966926453 @default.
- W4312933730 cites W2981362942 @default.
- W4312933730 cites W2981657250 @default.
- W4312933730 cites W2989630530 @default.
- W4312933730 cites W2990503944 @default.
- W4312933730 cites W2998095399 @default.
- W4312933730 cites W3034365816 @default.
- W4312933730 cites W3034475761 @default.
- W4312933730 cites W3034921716 @default.
- W4312933730 cites W3035236663 @default.
- W4312933730 cites W3035591705 @default.
- W4312933730 cites W3102015846 @default.
- W4312933730 cites W3171371659 @default.
- W4312933730 cites W3173531806 @default.
- W4312933730 cites W3174865552 @default.
- W4312933730 cites W3176148916 @default.
- W4312933730 cites W3180059462 @default.
- W4312933730 cites W3192083819 @default.
- W4312933730 cites W4230935892 @default.
- W4312933730 doi "https://doi.org/10.1109/cvpr52688.2022.00209" @default.
- W4312933730 hasPublicationYear "2022" @default.
- W4312933730 type Work @default.
- W4312933730 citedByCount "8" @default.
- W4312933730 countsByYear W43129337302022 @default.
- W4312933730 countsByYear W43129337302023 @default.
- W4312933730 crossrefType "proceedings-article" @default.
- W4312933730 hasAuthorship W4312933730A5002072267 @default.
- W4312933730 hasAuthorship W4312933730A5034197490 @default.
- W4312933730 hasAuthorship W4312933730A5038804187 @default.
- W4312933730 hasAuthorship W4312933730A5046341376 @default.
- W4312933730 hasAuthorship W4312933730A5048522863 @default.
- W4312933730 hasAuthorship W4312933730A5049465421 @default.
- W4312933730 hasAuthorship W4312933730A5063957844 @default.
- W4312933730 hasAuthorship W4312933730A5066028215 @default.
- W4312933730 hasBestOaLocation W43129337302 @default.
- W4312933730 hasConcept C105795698 @default.
- W4312933730 hasConcept C106131492 @default.
- W4312933730 hasConcept C11413529 @default.
- W4312933730 hasConcept C115961682 @default.
- W4312933730 hasConcept C126042441 @default.
- W4312933730 hasConcept C137800194 @default.
- W4312933730 hasConcept C138268822 @default.
- W4312933730 hasConcept C140779682 @default.
- W4312933730 hasConcept C154945302 @default.
- W4312933730 hasConcept C17744445 @default.
- W4312933730 hasConcept C199539241 @default.
- W4312933730 hasConcept C205372480 @default.
- W4312933730 hasConcept C2776359362 @default.
- W4312933730 hasConcept C2776459999 @default.
- W4312933730 hasConcept C2780598303 @default.
- W4312933730 hasConcept C31972630 @default.
- W4312933730 hasConcept C3261483 @default.
- W4312933730 hasConcept C33923547 @default.
- W4312933730 hasConcept C41008148 @default.
- W4312933730 hasConcept C76155785 @default.
- W4312933730 hasConcept C94625758 @default.
- W4312933730 hasConceptScore W4312933730C105795698 @default.
- W4312933730 hasConceptScore W4312933730C106131492 @default.
- W4312933730 hasConceptScore W4312933730C11413529 @default.
- W4312933730 hasConceptScore W4312933730C115961682 @default.
- W4312933730 hasConceptScore W4312933730C126042441 @default.
- W4312933730 hasConceptScore W4312933730C137800194 @default.
- W4312933730 hasConceptScore W4312933730C138268822 @default.
- W4312933730 hasConceptScore W4312933730C140779682 @default.
- W4312933730 hasConceptScore W4312933730C154945302 @default.
- W4312933730 hasConceptScore W4312933730C17744445 @default.
- W4312933730 hasConceptScore W4312933730C199539241 @default.
- W4312933730 hasConceptScore W4312933730C205372480 @default.
- W4312933730 hasConceptScore W4312933730C2776359362 @default.