Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312939876> ?p ?o ?g. }
- W4312939876 endingPage "23" @default.
- W4312939876 startingPage "1" @default.
- W4312939876 abstract "This paper provides a new strategy for the heterogeneous change detection (HCD) problem: solving HCD from the perspective of graph signal processing (GSP). We construct a graph to represent the structure of each image, and treat each image as a graph signal defined on the graph. In this way, we convert the HCD into a GSP problem: a comparison of the responses of signals on systems defined on the graphs, which attempts to find structural differences and signal differences due to the changes between heterogeneous images. Firstly, we analyze the GSP for HCD from the vertex domain. We show that once a region has changed, the local structure of image changes, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e</i> . the connectivity of the vertex containing this region changes. Therefore, we can compare the output signals of the same input graph signal passing through filters defined on the two graphs to detect changes. We analyze the negative effects of changing regions on the change detection results from the viewpoint of signal propagation, and we also design different filters from the vertex domain to explore the high-order neighborhood information hidden in original graphs. Secondly, we analyze the GSP for HCD from the spectral domain. We explore the spectral properties of different images on the same graph, and show that their spectra exhibit commonalities and dissimilarities. Specifically, it is the change that leads to the dissimilarities of their spectra. With the help of graph spectral analysis, we propose a regression model for the HCD, which decomposes the source signal into the regressed signal and changed signal, and constrains the spectral property of the regressed signal. Experiments conducted on seven real data sets show the effectiveness of the vertex domain filtering based and spectral domain analysis based HCD methods. Source code will be made available at https://github.com/yulisun/HCD-GSP." @default.
- W4312939876 created "2023-01-05" @default.
- W4312939876 creator A5004069573 @default.
- W4312939876 creator A5007685826 @default.
- W4312939876 creator A5027874662 @default.
- W4312939876 creator A5051077603 @default.
- W4312939876 creator A5082887216 @default.
- W4312939876 date "2022-01-01" @default.
- W4312939876 modified "2023-10-17" @default.
- W4312939876 title "Graph Signal Processing for Heterogeneous Change Detection" @default.
- W4312939876 cites W1698699930 @default.
- W4312939876 cites W1963816084 @default.
- W4312939876 cites W1977556410 @default.
- W4312939876 cites W1995450389 @default.
- W4312939876 cites W1997534118 @default.
- W4312939876 cites W2003447360 @default.
- W4312939876 cites W2025755239 @default.
- W4312939876 cites W2034073840 @default.
- W4312939876 cites W2035128422 @default.
- W4312939876 cites W2036798369 @default.
- W4312939876 cites W2050913223 @default.
- W4312939876 cites W2054085770 @default.
- W4312939876 cites W2060542593 @default.
- W4312939876 cites W2067441435 @default.
- W4312939876 cites W2090530010 @default.
- W4312939876 cites W2092998534 @default.
- W4312939876 cites W2101491865 @default.
- W4312939876 cites W2104374858 @default.
- W4312939876 cites W2107902126 @default.
- W4312939876 cites W2118246710 @default.
- W4312939876 cites W2133059825 @default.
- W4312939876 cites W2166052353 @default.
- W4312939876 cites W2293779343 @default.
- W4312939876 cites W2295862745 @default.
- W4312939876 cites W2536226103 @default.
- W4312939876 cites W2564140372 @default.
- W4312939876 cites W2750976776 @default.
- W4312939876 cites W2766372927 @default.
- W4312939876 cites W2769417998 @default.
- W4312939876 cites W2779571083 @default.
- W4312939876 cites W2796431263 @default.
- W4312939876 cites W2806617899 @default.
- W4312939876 cites W2808781521 @default.
- W4312939876 cites W2892203832 @default.
- W4312939876 cites W2902305955 @default.
- W4312939876 cites W2902752886 @default.
- W4312939876 cites W2914651367 @default.
- W4312939876 cites W2953308875 @default.
- W4312939876 cites W2955710332 @default.
- W4312939876 cites W2964105372 @default.
- W4312939876 cites W2966888491 @default.
- W4312939876 cites W2969081030 @default.
- W4312939876 cites W2970302645 @default.
- W4312939876 cites W2977618190 @default.
- W4312939876 cites W2982697215 @default.
- W4312939876 cites W3000358529 @default.
- W4312939876 cites W3008767742 @default.
- W4312939876 cites W3015287366 @default.
- W4312939876 cites W3017151926 @default.
- W4312939876 cites W3022569728 @default.
- W4312939876 cites W3033600255 @default.
- W4312939876 cites W3035335060 @default.
- W4312939876 cites W3040020917 @default.
- W4312939876 cites W3049615702 @default.
- W4312939876 cites W3066154933 @default.
- W4312939876 cites W3080080349 @default.
- W4312939876 cites W3083035255 @default.
- W4312939876 cites W3105578499 @default.
- W4312939876 cites W3107724517 @default.
- W4312939876 cites W3108293152 @default.
- W4312939876 cites W3112408361 @default.
- W4312939876 cites W3127542860 @default.
- W4312939876 cites W3131096279 @default.
- W4312939876 cites W3134586917 @default.
- W4312939876 cites W3144332889 @default.
- W4312939876 cites W3158058588 @default.
- W4312939876 cites W3159812033 @default.
- W4312939876 cites W3160469966 @default.
- W4312939876 cites W3164855829 @default.
- W4312939876 cites W3174068401 @default.
- W4312939876 cites W3182257909 @default.
- W4312939876 cites W3182928821 @default.
- W4312939876 cites W3183600011 @default.
- W4312939876 cites W3184550728 @default.
- W4312939876 cites W3185053233 @default.
- W4312939876 cites W3199538063 @default.
- W4312939876 cites W3201597391 @default.
- W4312939876 cites W3215176889 @default.
- W4312939876 cites W4205937042 @default.
- W4312939876 cites W4226377144 @default.
- W4312939876 cites W4292258945 @default.
- W4312939876 doi "https://doi.org/10.1109/tgrs.2022.3221489" @default.
- W4312939876 hasPublicationYear "2022" @default.
- W4312939876 type Work @default.
- W4312939876 citedByCount "4" @default.
- W4312939876 countsByYear W43129398762022 @default.
- W4312939876 countsByYear W43129398762023 @default.
- W4312939876 crossrefType "journal-article" @default.