Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312943944> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4312943944 abstract "Device-to-Device (D2D) underlying communication is communication between two devices without going through the base station by using the resources of Cellular User Equipment (CUE). This communication reduce the workload of the base station and increase network capacity. But the resources used simultaneously by the D2D pair and CUE in the underlying communication systems cause interference. To overcome this problem, power allocation needs to be done using Deep Neural Network (DNN) to overcome non-convex problems in maximizing sum-rate and energy efficiency. DNN can be considered a universal approach that can determine the best scheme in the system because it adapt to different environments and can replace the iterative method such as Convex Approximation (CA) based algorithm. This research aims to provide that power allocation using DNN can improve the performance of CA-based algorithm. An increment in the number of CUEs will be seen in sum-rate and energy efficiency. Simulation results show that an increment of CUEs increase sum-rate and energy efficiency. Besides that, DNN can approach the performance of the CA-based algorithm with accuracy above 98%, and improve 2% performance of the CA-based algorithm. DNN is more suitable to implement because it can improve the performance of the CA-based algorithm and can be implemented in different environment because there is learning process in DNN where the model can predict the output based on the input entered. So that DNN is able to produce the best output in power allocation." @default.
- W4312943944 created "2023-01-05" @default.
- W4312943944 creator A5057557138 @default.
- W4312943944 creator A5062082171 @default.
- W4312943944 creator A5076836622 @default.
- W4312943944 date "2022-08-25" @default.
- W4312943944 modified "2023-09-23" @default.
- W4312943944 title "Performance Improvement on Power Allocation Using Deep Neural Network in D2D Multi-cell Underlying Communication" @default.
- W4312943944 doi "https://doi.org/10.1109/icitacee55701.2022.9924002" @default.
- W4312943944 hasPublicationYear "2022" @default.
- W4312943944 type Work @default.
- W4312943944 citedByCount "0" @default.
- W4312943944 crossrefType "proceedings-article" @default.
- W4312943944 hasAuthorship W4312943944A5057557138 @default.
- W4312943944 hasAuthorship W4312943944A5062082171 @default.
- W4312943944 hasAuthorship W4312943944A5076836622 @default.
- W4312943944 hasConcept C101765175 @default.
- W4312943944 hasConcept C105795698 @default.
- W4312943944 hasConcept C111919701 @default.
- W4312943944 hasConcept C113775141 @default.
- W4312943944 hasConcept C119599485 @default.
- W4312943944 hasConcept C121332964 @default.
- W4312943944 hasConcept C127162648 @default.
- W4312943944 hasConcept C127413603 @default.
- W4312943944 hasConcept C134306372 @default.
- W4312943944 hasConcept C154945302 @default.
- W4312943944 hasConcept C163258240 @default.
- W4312943944 hasConcept C186370098 @default.
- W4312943944 hasConcept C2742236 @default.
- W4312943944 hasConcept C2778476105 @default.
- W4312943944 hasConcept C31258907 @default.
- W4312943944 hasConcept C32022120 @default.
- W4312943944 hasConcept C33923547 @default.
- W4312943944 hasConcept C41008148 @default.
- W4312943944 hasConcept C50644808 @default.
- W4312943944 hasConcept C62520636 @default.
- W4312943944 hasConcept C68649174 @default.
- W4312943944 hasConcept C77618280 @default.
- W4312943944 hasConcept C79403827 @default.
- W4312943944 hasConcept C98045186 @default.
- W4312943944 hasConceptScore W4312943944C101765175 @default.
- W4312943944 hasConceptScore W4312943944C105795698 @default.
- W4312943944 hasConceptScore W4312943944C111919701 @default.
- W4312943944 hasConceptScore W4312943944C113775141 @default.
- W4312943944 hasConceptScore W4312943944C119599485 @default.
- W4312943944 hasConceptScore W4312943944C121332964 @default.
- W4312943944 hasConceptScore W4312943944C127162648 @default.
- W4312943944 hasConceptScore W4312943944C127413603 @default.
- W4312943944 hasConceptScore W4312943944C134306372 @default.
- W4312943944 hasConceptScore W4312943944C154945302 @default.
- W4312943944 hasConceptScore W4312943944C163258240 @default.
- W4312943944 hasConceptScore W4312943944C186370098 @default.
- W4312943944 hasConceptScore W4312943944C2742236 @default.
- W4312943944 hasConceptScore W4312943944C2778476105 @default.
- W4312943944 hasConceptScore W4312943944C31258907 @default.
- W4312943944 hasConceptScore W4312943944C32022120 @default.
- W4312943944 hasConceptScore W4312943944C33923547 @default.
- W4312943944 hasConceptScore W4312943944C41008148 @default.
- W4312943944 hasConceptScore W4312943944C50644808 @default.
- W4312943944 hasConceptScore W4312943944C62520636 @default.
- W4312943944 hasConceptScore W4312943944C68649174 @default.
- W4312943944 hasConceptScore W4312943944C77618280 @default.
- W4312943944 hasConceptScore W4312943944C79403827 @default.
- W4312943944 hasConceptScore W4312943944C98045186 @default.
- W4312943944 hasFunder F4320311649 @default.
- W4312943944 hasLocation W43129439441 @default.
- W4312943944 hasOpenAccess W4312943944 @default.
- W4312943944 hasPrimaryLocation W43129439441 @default.
- W4312943944 hasRelatedWork W2032843226 @default.
- W4312943944 hasRelatedWork W2043603365 @default.
- W4312943944 hasRelatedWork W2612394874 @default.
- W4312943944 hasRelatedWork W2765609722 @default.
- W4312943944 hasRelatedWork W2777738692 @default.
- W4312943944 hasRelatedWork W2932064657 @default.
- W4312943944 hasRelatedWork W3153173896 @default.
- W4312943944 hasRelatedWork W4210343411 @default.
- W4312943944 hasRelatedWork W4286814759 @default.
- W4312943944 hasRelatedWork W1971566218 @default.
- W4312943944 isParatext "false" @default.
- W4312943944 isRetracted "false" @default.
- W4312943944 workType "article" @default.