Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312944124> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4312944124 endingPage "15" @default.
- W4312944124 startingPage "1" @default.
- W4312944124 abstract "Vertical Federated Learning (VFL) enables multiple clients to collaboratively train a global model over vertically partitioned data without leaking private local information. Tree-based models, like XGBoost and LightGBM, have been widely used in VFL to enhance the interpretation and efficiency of training. However, there is a fundamental lack of research on how to conduct VFL securely over distributed labels. This work is the first to fill this gap by designing a novel protocol, called FEVERLESS, based on XGBoost. FEVERLESS leverages secure aggregation via information masking technique and global differential privacy provided by a fairly and randomly selected noise leader to prevent private information from being leaked in the training process. Furthermore, it provides label and data privacy against honest-but-curious adversaries even in the case of collusion of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$n - 2$</tex-math></inline-formula> out of n clients. We present a comprehensive security and efficiency analysis for our design, and the empirical results from our experiments demonstrate that FEVERLESS is fast and secure. In particular, it outperforms the solution based on additive homomorphic encryption in runtime cost and provides better accuracy than the local differential privacy approach." @default.
- W4312944124 created "2023-01-05" @default.
- W4312944124 creator A5001485404 @default.
- W4312944124 creator A5002352554 @default.
- W4312944124 creator A5011536774 @default.
- W4312944124 creator A5032314861 @default.
- W4312944124 creator A5090399988 @default.
- W4312944124 date "2022-01-01" @default.
- W4312944124 modified "2023-10-02" @default.
- W4312944124 title "FEVERLESS: Fast and Secure Vertical Federated Learning based on XGBoost for Decentralized Labels" @default.
- W4312944124 doi "https://doi.org/10.1109/tbdata.2022.3227326" @default.
- W4312944124 hasPublicationYear "2022" @default.
- W4312944124 type Work @default.
- W4312944124 citedByCount "6" @default.
- W4312944124 countsByYear W43129441242022 @default.
- W4312944124 countsByYear W43129441242023 @default.
- W4312944124 crossrefType "journal-article" @default.
- W4312944124 hasAuthorship W4312944124A5001485404 @default.
- W4312944124 hasAuthorship W4312944124A5002352554 @default.
- W4312944124 hasAuthorship W4312944124A5011536774 @default.
- W4312944124 hasAuthorship W4312944124A5032314861 @default.
- W4312944124 hasAuthorship W4312944124A5090399988 @default.
- W4312944124 hasConcept C11413529 @default.
- W4312944124 hasConcept C115961682 @default.
- W4312944124 hasConcept C124101348 @default.
- W4312944124 hasConcept C142362112 @default.
- W4312944124 hasConcept C148730421 @default.
- W4312944124 hasConcept C153349607 @default.
- W4312944124 hasConcept C154945302 @default.
- W4312944124 hasConcept C158338273 @default.
- W4312944124 hasConcept C162324750 @default.
- W4312944124 hasConcept C175444787 @default.
- W4312944124 hasConcept C178489894 @default.
- W4312944124 hasConcept C203062551 @default.
- W4312944124 hasConcept C23130292 @default.
- W4312944124 hasConcept C2777402240 @default.
- W4312944124 hasConcept C2781198186 @default.
- W4312944124 hasConcept C38652104 @default.
- W4312944124 hasConcept C41008148 @default.
- W4312944124 hasConcept C66989864 @default.
- W4312944124 hasConcept C73468433 @default.
- W4312944124 hasConcept C80444323 @default.
- W4312944124 hasConcept C99221444 @default.
- W4312944124 hasConcept C99498987 @default.
- W4312944124 hasConceptScore W4312944124C11413529 @default.
- W4312944124 hasConceptScore W4312944124C115961682 @default.
- W4312944124 hasConceptScore W4312944124C124101348 @default.
- W4312944124 hasConceptScore W4312944124C142362112 @default.
- W4312944124 hasConceptScore W4312944124C148730421 @default.
- W4312944124 hasConceptScore W4312944124C153349607 @default.
- W4312944124 hasConceptScore W4312944124C154945302 @default.
- W4312944124 hasConceptScore W4312944124C158338273 @default.
- W4312944124 hasConceptScore W4312944124C162324750 @default.
- W4312944124 hasConceptScore W4312944124C175444787 @default.
- W4312944124 hasConceptScore W4312944124C178489894 @default.
- W4312944124 hasConceptScore W4312944124C203062551 @default.
- W4312944124 hasConceptScore W4312944124C23130292 @default.
- W4312944124 hasConceptScore W4312944124C2777402240 @default.
- W4312944124 hasConceptScore W4312944124C2781198186 @default.
- W4312944124 hasConceptScore W4312944124C38652104 @default.
- W4312944124 hasConceptScore W4312944124C41008148 @default.
- W4312944124 hasConceptScore W4312944124C66989864 @default.
- W4312944124 hasConceptScore W4312944124C73468433 @default.
- W4312944124 hasConceptScore W4312944124C80444323 @default.
- W4312944124 hasConceptScore W4312944124C99221444 @default.
- W4312944124 hasConceptScore W4312944124C99498987 @default.
- W4312944124 hasLocation W43129441241 @default.
- W4312944124 hasOpenAccess W4312944124 @default.
- W4312944124 hasPrimaryLocation W43129441241 @default.
- W4312944124 hasRelatedWork W2029355506 @default.
- W4312944124 hasRelatedWork W2037113620 @default.
- W4312944124 hasRelatedWork W2295665527 @default.
- W4312944124 hasRelatedWork W3036675567 @default.
- W4312944124 hasRelatedWork W3156116160 @default.
- W4312944124 hasRelatedWork W4283691015 @default.
- W4312944124 hasRelatedWork W4287213360 @default.
- W4312944124 hasRelatedWork W4312944124 @default.
- W4312944124 hasRelatedWork W4323896428 @default.
- W4312944124 hasRelatedWork W592911888 @default.
- W4312944124 isParatext "false" @default.
- W4312944124 isRetracted "false" @default.
- W4312944124 workType "article" @default.