Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312946710> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4312946710 abstract "The precise mapping and monitoring of crop types is essential for forecasting food production during each crop growing cycle. Accurate monitoring and discriminating of crop types will enable industry to make more informed decisions, thus reducing input costs and improving on-farm profitability. Multiple remote sensing and machine learning derived approaches have attempted to solve this challenge. Generally these approaches fail to accurately capture the biological processes (e.g., phenology) of crop growth due to lack of temporal information capture in their dataset. To address this problem, we propose a deep learning architecture in which a long short-term memory (LSTM) is incorporated with a selfattention mechanism. Experimental results demonstrate high accuracy (approaching or exceeding 90% for full season) in discriminating between six crop species for different environments in Australia. Importantly, most species could be identified at >80% precision within approximately two to three months of planting (end June), though to achieve this discrimination for Wheat and Barley required data to 15th October. Nevertheless, this precision is sufficient to inform end-of-season planning for yield and logistics relating to specific crop species." @default.
- W4312946710 created "2023-01-05" @default.
- W4312946710 creator A5003308080 @default.
- W4312946710 creator A5016266775 @default.
- W4312946710 creator A5023669776 @default.
- W4312946710 creator A5036658104 @default.
- W4312946710 creator A5053018788 @default.
- W4312946710 creator A5056884940 @default.
- W4312946710 creator A5060800572 @default.
- W4312946710 creator A5065032937 @default.
- W4312946710 date "2022-07-17" @default.
- W4312946710 modified "2023-09-23" @default.
- W4312946710 title "Crop Type Prediction Utilising a Long Short-Term Memory with a Self-Attention for Winter Crops in Australia" @default.
- W4312946710 cites W2144499799 @default.
- W4312946710 cites W2807493049 @default.
- W4312946710 cites W3176381742 @default.
- W4312946710 doi "https://doi.org/10.1109/igarss46834.2022.9883737" @default.
- W4312946710 hasPublicationYear "2022" @default.
- W4312946710 type Work @default.
- W4312946710 citedByCount "0" @default.
- W4312946710 crossrefType "proceedings-article" @default.
- W4312946710 hasAuthorship W4312946710A5003308080 @default.
- W4312946710 hasAuthorship W4312946710A5016266775 @default.
- W4312946710 hasAuthorship W4312946710A5023669776 @default.
- W4312946710 hasAuthorship W4312946710A5036658104 @default.
- W4312946710 hasAuthorship W4312946710A5053018788 @default.
- W4312946710 hasAuthorship W4312946710A5056884940 @default.
- W4312946710 hasAuthorship W4312946710A5060800572 @default.
- W4312946710 hasAuthorship W4312946710A5065032937 @default.
- W4312946710 hasConcept C10138342 @default.
- W4312946710 hasConcept C119857082 @default.
- W4312946710 hasConcept C121332964 @default.
- W4312946710 hasConcept C126343540 @default.
- W4312946710 hasConcept C127413603 @default.
- W4312946710 hasConcept C129361004 @default.
- W4312946710 hasConcept C137580998 @default.
- W4312946710 hasConcept C137660486 @default.
- W4312946710 hasConcept C154945302 @default.
- W4312946710 hasConcept C162324750 @default.
- W4312946710 hasConcept C41008148 @default.
- W4312946710 hasConcept C51417038 @default.
- W4312946710 hasConcept C61797465 @default.
- W4312946710 hasConcept C62520636 @default.
- W4312946710 hasConcept C6557445 @default.
- W4312946710 hasConcept C86803240 @default.
- W4312946710 hasConcept C88463610 @default.
- W4312946710 hasConceptScore W4312946710C10138342 @default.
- W4312946710 hasConceptScore W4312946710C119857082 @default.
- W4312946710 hasConceptScore W4312946710C121332964 @default.
- W4312946710 hasConceptScore W4312946710C126343540 @default.
- W4312946710 hasConceptScore W4312946710C127413603 @default.
- W4312946710 hasConceptScore W4312946710C129361004 @default.
- W4312946710 hasConceptScore W4312946710C137580998 @default.
- W4312946710 hasConceptScore W4312946710C137660486 @default.
- W4312946710 hasConceptScore W4312946710C154945302 @default.
- W4312946710 hasConceptScore W4312946710C162324750 @default.
- W4312946710 hasConceptScore W4312946710C41008148 @default.
- W4312946710 hasConceptScore W4312946710C51417038 @default.
- W4312946710 hasConceptScore W4312946710C61797465 @default.
- W4312946710 hasConceptScore W4312946710C62520636 @default.
- W4312946710 hasConceptScore W4312946710C6557445 @default.
- W4312946710 hasConceptScore W4312946710C86803240 @default.
- W4312946710 hasConceptScore W4312946710C88463610 @default.
- W4312946710 hasFunder F4320320420 @default.
- W4312946710 hasFunder F4320320984 @default.
- W4312946710 hasLocation W43129467101 @default.
- W4312946710 hasOpenAccess W4312946710 @default.
- W4312946710 hasPrimaryLocation W43129467101 @default.
- W4312946710 hasRelatedWork W2202498515 @default.
- W4312946710 hasRelatedWork W2242337554 @default.
- W4312946710 hasRelatedWork W2330540015 @default.
- W4312946710 hasRelatedWork W2603278376 @default.
- W4312946710 hasRelatedWork W2756913774 @default.
- W4312946710 hasRelatedWork W2890773537 @default.
- W4312946710 hasRelatedWork W3176467083 @default.
- W4312946710 hasRelatedWork W4200211221 @default.
- W4312946710 hasRelatedWork W4220756134 @default.
- W4312946710 hasRelatedWork W4312946710 @default.
- W4312946710 isParatext "false" @default.
- W4312946710 isRetracted "false" @default.
- W4312946710 workType "article" @default.