Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312973876> ?p ?o ?g. }
- W4312973876 endingPage "104374" @default.
- W4312973876 startingPage "104358" @default.
- W4312973876 abstract "The recent developments in deep learning techniques evolved to new heights in various domains and applications. The recognition, translation, and video generation of Sign Language (SL) still face huge challenges from the development perspective. Although numerous advancements have been made in earlier approaches, the model performance still lacks recognition accuracy and visual quality. In this paper, we introduce novel approaches for developing the complete framework for handling SL recognition, translation, and production tasks in real-time cases. To achieve higher recognition accuracy, we use the MediaPipe library and a hybrid Convolutional Neural Network + Bi-directional Long Short Term Memory (CNN + Bi-LSTM) model for pose details extraction and text generation. On the other hand, the production of sign gesture videos for given spoken sentences is implemented using a hybrid Neural Machine Translation (NMT) + MediaPipe + Dynamic Generative Adversarial Network (GAN) model. The proposed model addresses the various complexities present in the existing approaches and achieves above 95% classification accuracy. In addition to that, the model performance is tested in various phases of development, and the evaluation metrics show noticeable improvements in our model. The model has been experimented with using different multilingual benchmark sign corpus and produces greater results in terms of recognition accuracy and visual quality. The proposed model has secured a 38.06 average Bilingual Evaluation Understudy (BLEU) score, remarkable human evaluation scores, 3.46 average Fréchet Inception Distance to videos (FID2vid) score, 0.921 average Structural Similarity Index Measure (SSIM) values, 8.4 average Inception Score, 29.73 average Peak Signal-to-Noise Ratio (PSNR) score, 14.06 average Fréchet Inception Distance (FID) score, and an average 0.715 Temporal Consistency Metric (TCM) Score which is evidence of the proposed work." @default.
- W4312973876 created "2023-01-05" @default.
- W4312973876 creator A5012364755 @default.
- W4312973876 creator A5065579469 @default.
- W4312973876 creator A5077770842 @default.
- W4312973876 creator A5081595871 @default.
- W4312973876 creator A5082732185 @default.
- W4312973876 creator A5085811655 @default.
- W4312973876 creator A5087542455 @default.
- W4312973876 date "2022-01-01" @default.
- W4312973876 modified "2023-10-16" @default.
- W4312973876 title "Development of an End-to-End Deep Learning Framework for Sign Language Recognition, Translation, and Video Generation" @default.
- W4312973876 cites W1019830208 @default.
- W4312973876 cites W2064675550 @default.
- W4312973876 cites W2566564364 @default.
- W4312973876 cites W2771644755 @default.
- W4312973876 cites W2799020610 @default.
- W4312973876 cites W2805595195 @default.
- W4312973876 cites W2884367402 @default.
- W4312973876 cites W2889104897 @default.
- W4312973876 cites W2895991254 @default.
- W4312973876 cites W2901184219 @default.
- W4312973876 cites W2912213862 @default.
- W4312973876 cites W2913323966 @default.
- W4312973876 cites W2919403359 @default.
- W4312973876 cites W2920083100 @default.
- W4312973876 cites W2940791683 @default.
- W4312973876 cites W2942848957 @default.
- W4312973876 cites W2962793481 @default.
- W4312973876 cites W2963073614 @default.
- W4312973876 cites W2963092440 @default.
- W4312973876 cites W2963522749 @default.
- W4312973876 cites W2964024144 @default.
- W4312973876 cites W2964199361 @default.
- W4312973876 cites W2964248288 @default.
- W4312973876 cites W2967408965 @default.
- W4312973876 cites W2989855043 @default.
- W4312973876 cites W2997573805 @default.
- W4312973876 cites W3008327514 @default.
- W4312973876 cites W3009828227 @default.
- W4312973876 cites W3013376562 @default.
- W4312973876 cites W3015948701 @default.
- W4312973876 cites W3020922019 @default.
- W4312973876 cites W3021201059 @default.
- W4312973876 cites W3022643593 @default.
- W4312973876 cites W3034600949 @default.
- W4312973876 cites W3035548318 @default.
- W4312973876 cites W3037849673 @default.
- W4312973876 cites W3046132566 @default.
- W4312973876 cites W3046869553 @default.
- W4312973876 cites W3046905592 @default.
- W4312973876 cites W3087439305 @default.
- W4312973876 cites W3091710143 @default.
- W4312973876 cites W3102431071 @default.
- W4312973876 cites W3108242995 @default.
- W4312973876 cites W3110578706 @default.
- W4312973876 cites W3111432325 @default.
- W4312973876 cites W3113816305 @default.
- W4312973876 cites W3120405191 @default.
- W4312973876 cites W3128873393 @default.
- W4312973876 cites W3132490548 @default.
- W4312973876 cites W3132562436 @default.
- W4312973876 cites W3136651352 @default.
- W4312973876 cites W3141929194 @default.
- W4312973876 cites W3157843597 @default.
- W4312973876 cites W3163895120 @default.
- W4312973876 cites W3164510030 @default.
- W4312973876 cites W3167214817 @default.
- W4312973876 cites W3168702146 @default.
- W4312973876 cites W3195666380 @default.
- W4312973876 cites W3203359574 @default.
- W4312973876 cites W3207192979 @default.
- W4312973876 cites W3211801295 @default.
- W4312973876 cites W4206652870 @default.
- W4312973876 cites W4210342212 @default.
- W4312973876 cites W4283642383 @default.
- W4312973876 doi "https://doi.org/10.1109/access.2022.3210543" @default.
- W4312973876 hasPublicationYear "2022" @default.
- W4312973876 type Work @default.
- W4312973876 citedByCount "7" @default.
- W4312973876 countsByYear W43129738762023 @default.
- W4312973876 crossrefType "journal-article" @default.
- W4312973876 hasAuthorship W4312973876A5012364755 @default.
- W4312973876 hasAuthorship W4312973876A5065579469 @default.
- W4312973876 hasAuthorship W4312973876A5077770842 @default.
- W4312973876 hasAuthorship W4312973876A5081595871 @default.
- W4312973876 hasAuthorship W4312973876A5082732185 @default.
- W4312973876 hasAuthorship W4312973876A5085811655 @default.
- W4312973876 hasAuthorship W4312973876A5087542455 @default.
- W4312973876 hasBestOaLocation W43129738761 @default.
- W4312973876 hasConcept C103278499 @default.
- W4312973876 hasConcept C104317684 @default.
- W4312973876 hasConcept C105580179 @default.
- W4312973876 hasConcept C108583219 @default.
- W4312973876 hasConcept C115961682 @default.
- W4312973876 hasConcept C13280743 @default.
- W4312973876 hasConcept C138885662 @default.
- W4312973876 hasConcept C149364088 @default.