Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312976151> ?p ?o ?g. }
- W4312976151 endingPage "2170" @default.
- W4312976151 startingPage "2156" @default.
- W4312976151 abstract "Emotion recognition using audiovisual features is a challenging task for human-machine interaction systems. Under ideal conditions (perfect illumination, clean speech signals, and non-occluded visual data) many systems are able to achieve reliable results. However, few studies have considered developing multimodal systems and training strategies to build systems that can perform well under non ideal conditions. Audiovisual models still face challenging problems such as misalignment of modalities, lack of temporal modeling, and missing features due to noise or occlusions. In this article, we implement a model that combines auxiliary networks, a transformer architecture, and an optimized training mechanism to achieve a robust system for audiovisual emotion recognition that addresses, in a principled way, these challenges. Our evaluation analyzes how well this model performs in ideal conditions and when modalities are missing. We contrast this method with other multimodal fusion methods for emotion recognition. Our experimental results based on two audiovisual databases demonstrate that the proposed framework achieves: 1) improvements in emotion recognition accuracy, 2) better alignment and fusion of audiovisual features at the model level, 3) awareness of temporal information, and 4) robustness to non-ideal scenarios." @default.
- W4312976151 created "2023-01-05" @default.
- W4312976151 creator A5017966455 @default.
- W4312976151 creator A5040793194 @default.
- W4312976151 date "2022-10-01" @default.
- W4312976151 modified "2023-10-09" @default.
- W4312976151 title "Robust Audiovisual Emotion Recognition: Aligning Modalities, Capturing Temporal Information, and Handling Missing Features" @default.
- W4312976151 cites W1485958089 @default.
- W4312976151 cites W1988910659 @default.
- W4312976151 cites W2008887256 @default.
- W4312976151 cites W2012237712 @default.
- W4312976151 cites W2026243162 @default.
- W4312976151 cites W2028899742 @default.
- W4312976151 cites W2030931454 @default.
- W4312976151 cites W2042608483 @default.
- W4312976151 cites W2071932093 @default.
- W4312976151 cites W2083638007 @default.
- W4312976151 cites W2085662862 @default.
- W4312976151 cites W2096391593 @default.
- W4312976151 cites W2097117768 @default.
- W4312976151 cites W2116258879 @default.
- W4312976151 cites W2137454998 @default.
- W4312976151 cites W2144005487 @default.
- W4312976151 cites W2147634797 @default.
- W4312976151 cites W2148146486 @default.
- W4312976151 cites W2154739180 @default.
- W4312976151 cites W2155765376 @default.
- W4312976151 cites W2156503193 @default.
- W4312976151 cites W2157190406 @default.
- W4312976151 cites W2163026698 @default.
- W4312976151 cites W2164471543 @default.
- W4312976151 cites W2168465881 @default.
- W4312976151 cites W2277498883 @default.
- W4312976151 cites W2289165730 @default.
- W4312976151 cites W2314395941 @default.
- W4312976151 cites W2325939864 @default.
- W4312976151 cites W2342475039 @default.
- W4312976151 cites W2491224255 @default.
- W4312976151 cites W2525412388 @default.
- W4312976151 cites W2745497104 @default.
- W4312976151 cites W2807126412 @default.
- W4312976151 cites W2885905848 @default.
- W4312976151 cites W2886564777 @default.
- W4312976151 cites W2887761937 @default.
- W4312976151 cites W2897067191 @default.
- W4312976151 cites W2945503157 @default.
- W4312976151 cites W2963542740 @default.
- W4312976151 cites W2963702064 @default.
- W4312976151 cites W2964051877 @default.
- W4312976151 cites W2972602947 @default.
- W4312976151 cites W2997258743 @default.
- W4312976151 cites W3007589762 @default.
- W4312976151 cites W3024979138 @default.
- W4312976151 cites W3034266838 @default.
- W4312976151 cites W3035118106 @default.
- W4312976151 cites W3035299099 @default.
- W4312976151 cites W3080565611 @default.
- W4312976151 cites W3086923691 @default.
- W4312976151 cites W3101998545 @default.
- W4312976151 cites W3114214226 @default.
- W4312976151 cites W3128401974 @default.
- W4312976151 cites W3128412859 @default.
- W4312976151 cites W3172448037 @default.
- W4312976151 cites W3196749180 @default.
- W4312976151 cites W4224932526 @default.
- W4312976151 cites W4224933371 @default.
- W4312976151 cites W4297841781 @default.
- W4312976151 doi "https://doi.org/10.1109/taffc.2022.3216993" @default.
- W4312976151 hasPublicationYear "2022" @default.
- W4312976151 type Work @default.
- W4312976151 citedByCount "2" @default.
- W4312976151 countsByYear W43129761512023 @default.
- W4312976151 crossrefType "journal-article" @default.
- W4312976151 hasAuthorship W4312976151A5017966455 @default.
- W4312976151 hasAuthorship W4312976151A5040793194 @default.
- W4312976151 hasBestOaLocation W43129761511 @default.
- W4312976151 hasConcept C104317684 @default.
- W4312976151 hasConcept C119857082 @default.
- W4312976151 hasConcept C144024400 @default.
- W4312976151 hasConcept C153180895 @default.
- W4312976151 hasConcept C154945302 @default.
- W4312976151 hasConcept C185592680 @default.
- W4312976151 hasConcept C2779903281 @default.
- W4312976151 hasConcept C28490314 @default.
- W4312976151 hasConcept C36289849 @default.
- W4312976151 hasConcept C41008148 @default.
- W4312976151 hasConcept C55493867 @default.
- W4312976151 hasConcept C63479239 @default.
- W4312976151 hasConceptScore W4312976151C104317684 @default.
- W4312976151 hasConceptScore W4312976151C119857082 @default.
- W4312976151 hasConceptScore W4312976151C144024400 @default.
- W4312976151 hasConceptScore W4312976151C153180895 @default.
- W4312976151 hasConceptScore W4312976151C154945302 @default.
- W4312976151 hasConceptScore W4312976151C185592680 @default.
- W4312976151 hasConceptScore W4312976151C2779903281 @default.
- W4312976151 hasConceptScore W4312976151C28490314 @default.
- W4312976151 hasConceptScore W4312976151C36289849 @default.
- W4312976151 hasConceptScore W4312976151C41008148 @default.