Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312986972> ?p ?o ?g. }
- W4312986972 endingPage "124386" @default.
- W4312986972 startingPage "124373" @default.
- W4312986972 abstract "Data scarcity is a common and challenging issue when working with Artificial Intelligence solutions, especially those including Deep Learning (DL) models for tasks such as image classification. This is particularly relevant in healthcare scenarios, in which data collection requires a long-lasting process, involving specific control protocols. The performance of DL models is usually quantified by different classification metrics, which may provide biased results, due to the lack of sufficient data. In this paper, an innovative approach is proposed to evaluate the performance of DL models when labeled data is scarce. This approach, which aims to detect the poor performance provided by DL models, in spite of traditional assessing metrics indicating otherwise, is based on information theoretic concepts and motivated by the Information Bottleneck framework. This methodology has been evaluated by implementing several experimental configurations to classify samples from a plantar thermogram dataset, focused on early stage detection of diabetic foot ulcers, as a case study. The proposed network architectures exhibited high results in terms of classification metrics. However, as our approach shows, only two of those models are indeed consistent to generalize the data properly. In conclusion, a new methodology was introduced and tested to identify promising DL models for image classification over small datasets without relying exclusively on the widely employed classification metrics." @default.
- W4312986972 created "2023-01-05" @default.
- W4312986972 creator A5010245752 @default.
- W4312986972 creator A5037084402 @default.
- W4312986972 creator A5045090259 @default.
- W4312986972 creator A5058061897 @default.
- W4312986972 creator A5063432116 @default.
- W4312986972 creator A5064139164 @default.
- W4312986972 date "2022-01-01" @default.
- W4312986972 modified "2023-09-26" @default.
- W4312986972 title "Performance Evaluation of Deep Learning Models for Image Classification Over Small Datasets: Diabetic Foot Case Study" @default.
- W4312986972 cites W1570613334 @default.
- W4312986972 cites W1983922716 @default.
- W4312986972 cites W2022852240 @default.
- W4312986972 cites W2100495367 @default.
- W4312986972 cites W2129905273 @default.
- W4312986972 cites W2150409393 @default.
- W4312986972 cites W2194775991 @default.
- W4312986972 cites W2555943799 @default.
- W4312986972 cites W2890781352 @default.
- W4312986972 cites W2891043409 @default.
- W4312986972 cites W2954074628 @default.
- W4312986972 cites W2954996726 @default.
- W4312986972 cites W2962783375 @default.
- W4312986972 cites W2963386266 @default.
- W4312986972 cites W2964184826 @default.
- W4312986972 cites W2967307920 @default.
- W4312986972 cites W2972612047 @default.
- W4312986972 cites W2976398475 @default.
- W4312986972 cites W2985252154 @default.
- W4312986972 cites W2996320484 @default.
- W4312986972 cites W3012393889 @default.
- W4312986972 cites W3012934857 @default.
- W4312986972 cites W3023402713 @default.
- W4312986972 cites W3038835370 @default.
- W4312986972 cites W3081752372 @default.
- W4312986972 cites W3091595271 @default.
- W4312986972 cites W3096211615 @default.
- W4312986972 cites W3097933861 @default.
- W4312986972 cites W3129111990 @default.
- W4312986972 cites W3134475970 @default.
- W4312986972 cites W3161068574 @default.
- W4312986972 cites W3174248541 @default.
- W4312986972 cites W3188036383 @default.
- W4312986972 cites W3200152448 @default.
- W4312986972 cites W4220761448 @default.
- W4312986972 cites W4230367971 @default.
- W4312986972 doi "https://doi.org/10.1109/access.2022.3225107" @default.
- W4312986972 hasPublicationYear "2022" @default.
- W4312986972 type Work @default.
- W4312986972 citedByCount "1" @default.
- W4312986972 countsByYear W43129869722023 @default.
- W4312986972 crossrefType "journal-article" @default.
- W4312986972 hasAuthorship W4312986972A5010245752 @default.
- W4312986972 hasAuthorship W4312986972A5037084402 @default.
- W4312986972 hasAuthorship W4312986972A5045090259 @default.
- W4312986972 hasAuthorship W4312986972A5058061897 @default.
- W4312986972 hasAuthorship W4312986972A5063432116 @default.
- W4312986972 hasAuthorship W4312986972A5064139164 @default.
- W4312986972 hasBestOaLocation W43129869721 @default.
- W4312986972 hasConcept C108583219 @default.
- W4312986972 hasConcept C111919701 @default.
- W4312986972 hasConcept C115961682 @default.
- W4312986972 hasConcept C119857082 @default.
- W4312986972 hasConcept C124101348 @default.
- W4312986972 hasConcept C149635348 @default.
- W4312986972 hasConcept C153180895 @default.
- W4312986972 hasConcept C154945302 @default.
- W4312986972 hasConcept C2780513914 @default.
- W4312986972 hasConcept C41008148 @default.
- W4312986972 hasConcept C75294576 @default.
- W4312986972 hasConcept C98045186 @default.
- W4312986972 hasConceptScore W4312986972C108583219 @default.
- W4312986972 hasConceptScore W4312986972C111919701 @default.
- W4312986972 hasConceptScore W4312986972C115961682 @default.
- W4312986972 hasConceptScore W4312986972C119857082 @default.
- W4312986972 hasConceptScore W4312986972C124101348 @default.
- W4312986972 hasConceptScore W4312986972C149635348 @default.
- W4312986972 hasConceptScore W4312986972C153180895 @default.
- W4312986972 hasConceptScore W4312986972C154945302 @default.
- W4312986972 hasConceptScore W4312986972C2780513914 @default.
- W4312986972 hasConceptScore W4312986972C41008148 @default.
- W4312986972 hasConceptScore W4312986972C75294576 @default.
- W4312986972 hasConceptScore W4312986972C98045186 @default.
- W4312986972 hasLocation W43129869721 @default.
- W4312986972 hasOpenAccess W4312986972 @default.
- W4312986972 hasPrimaryLocation W43129869721 @default.
- W4312986972 hasRelatedWork W2795261237 @default.
- W4312986972 hasRelatedWork W3014300295 @default.
- W4312986972 hasRelatedWork W3164822677 @default.
- W4312986972 hasRelatedWork W4223943233 @default.
- W4312986972 hasRelatedWork W4225161397 @default.
- W4312986972 hasRelatedWork W4312200629 @default.
- W4312986972 hasRelatedWork W4360585206 @default.
- W4312986972 hasRelatedWork W4364306694 @default.
- W4312986972 hasRelatedWork W4380075502 @default.
- W4312986972 hasRelatedWork W4380086463 @default.
- W4312986972 hasVolume "10" @default.