Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312994537> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4312994537 abstract "To automate log interpretation at field scale, computational methods used to predict partially or entirely missing logs can be valuable. Such approaches could be potentially useful for correcting intervals of low-quality data, as well as predicting intervals outside the reservoir region where measured data are sparse. Furthermore, these capabilities may be useful as preconditioning for downstream analysis; e.g., to improve the class balance of different formation types during the log-seismic integration. The objective of this study is to compare the performance of several promising machine-learning (ML) methods for predicting missing logs. We include the following methods in the comparison: the window-based convolutional neural network autoencoder (WAE), the pointwise fully connected autoencoder (PAE), and the tree-based pointwise eXtreme Gradient Boosting (XGBoost). We also discuss the underlying assumptions and advantages of each method. With ML applications becoming increasingly popular among geoscientists, this study helps us understand the advantages and limitations of different regression methods used for log prediction and helps us better evaluate such ML approaches against traditional methods. For the various methods under consideration, we compare the computational complexity, model complexity (or model capacity), convergence rate during training, prediction error [root mean square error (RMSE) and mean absolute error (MAE)], and the analysis of both high- and low-scale feature reconstruction. We also note the unique aspects of each method. The study is conducted on well log data from multiple fields, and each field poses a variety of challenges, including the presence of coal, gas, radioactive sandstones, and highly rugose boreholes. We use the above-mentioned methods to predict one of the following logs: density, neutron porosity, gamma ray, or compressional slowness. We assume only one missing log at a given interval. Sequence-based methods can capture serial context information that allows for prediction in zones with depth-shifted logs, as well as using the information learned from nearby data to predict missing intervals. However, depending on the network capacity and the amount of training data, it can result in poor reconstruction of the short-scale features. On the other hand, while pointwise methods are less affected by nearby low-quality data, they may be challenged when the context information is important because of ambiguity in the logs." @default.
- W4312994537 created "2023-01-05" @default.
- W4312994537 creator A5022725884 @default.
- W4312994537 creator A5040315287 @default.
- W4312994537 creator A5063881188 @default.
- W4312994537 creator A5078755958 @default.
- W4312994537 creator A5079173460 @default.
- W4312994537 date "2022-06-11" @default.
- W4312994537 modified "2023-10-18" @default.
- W4312994537 title "A Comparative Study for Machine-Learning-Based Methods for Log Prediction" @default.
- W4312994537 doi "https://doi.org/10.30632/spwla-2022-0067" @default.
- W4312994537 hasPublicationYear "2022" @default.
- W4312994537 type Work @default.
- W4312994537 citedByCount "0" @default.
- W4312994537 crossrefType "proceedings-article" @default.
- W4312994537 hasAuthorship W4312994537A5022725884 @default.
- W4312994537 hasAuthorship W4312994537A5040315287 @default.
- W4312994537 hasAuthorship W4312994537A5063881188 @default.
- W4312994537 hasAuthorship W4312994537A5078755958 @default.
- W4312994537 hasAuthorship W4312994537A5079173460 @default.
- W4312994537 hasConcept C101738243 @default.
- W4312994537 hasConcept C105795698 @default.
- W4312994537 hasConcept C11413529 @default.
- W4312994537 hasConcept C119857082 @default.
- W4312994537 hasConcept C124101348 @default.
- W4312994537 hasConcept C134306372 @default.
- W4312994537 hasConcept C139945424 @default.
- W4312994537 hasConcept C154945302 @default.
- W4312994537 hasConcept C202444582 @default.
- W4312994537 hasConcept C2777984123 @default.
- W4312994537 hasConcept C33923547 @default.
- W4312994537 hasConcept C41008148 @default.
- W4312994537 hasConcept C50644808 @default.
- W4312994537 hasConcept C81363708 @default.
- W4312994537 hasConcept C9652623 @default.
- W4312994537 hasConceptScore W4312994537C101738243 @default.
- W4312994537 hasConceptScore W4312994537C105795698 @default.
- W4312994537 hasConceptScore W4312994537C11413529 @default.
- W4312994537 hasConceptScore W4312994537C119857082 @default.
- W4312994537 hasConceptScore W4312994537C124101348 @default.
- W4312994537 hasConceptScore W4312994537C134306372 @default.
- W4312994537 hasConceptScore W4312994537C139945424 @default.
- W4312994537 hasConceptScore W4312994537C154945302 @default.
- W4312994537 hasConceptScore W4312994537C202444582 @default.
- W4312994537 hasConceptScore W4312994537C2777984123 @default.
- W4312994537 hasConceptScore W4312994537C33923547 @default.
- W4312994537 hasConceptScore W4312994537C41008148 @default.
- W4312994537 hasConceptScore W4312994537C50644808 @default.
- W4312994537 hasConceptScore W4312994537C81363708 @default.
- W4312994537 hasConceptScore W4312994537C9652623 @default.
- W4312994537 hasLocation W43129945371 @default.
- W4312994537 hasOpenAccess W4312994537 @default.
- W4312994537 hasPrimaryLocation W43129945371 @default.
- W4312994537 hasRelatedWork W143502885 @default.
- W4312994537 hasRelatedWork W2140020064 @default.
- W4312994537 hasRelatedWork W2159052453 @default.
- W4312994537 hasRelatedWork W2566616303 @default.
- W4312994537 hasRelatedWork W2734887215 @default.
- W4312994537 hasRelatedWork W2752972570 @default.
- W4312994537 hasRelatedWork W2803255133 @default.
- W4312994537 hasRelatedWork W3013693939 @default.
- W4312994537 hasRelatedWork W3131327266 @default.
- W4312994537 hasRelatedWork W4297051394 @default.
- W4312994537 isParatext "false" @default.
- W4312994537 isRetracted "false" @default.
- W4312994537 workType "article" @default.